Previous |  Up |  Next

Article

Title: $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras (English)
Author: Wani, Bilal Ahmad
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 371-383
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal{R} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal{R} $. In this paper it is shown that if $\mathcal{R} $ satisfies $$2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})$$ for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal { R}$ admits an additive mappings $\mathcal{D} ,\mathcal{G} \colon \mathcal{R} \rightarrow \mathcal{R} $ satisfying the relations \begin {gather*}\nonumber 2\mathcal{D} (x^n) = \mathcal{D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{G} (x)+\mathcal{G} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{G} (x^{n-1})\,, \\ 2\mathcal{G} (x^n) = \mathcal{G} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal{D} (x)+\mathcal{D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal{D} (x^{n-1})\,, \end {gather*} for all $x\in \mathcal{R} $ and some fixed integer $n\geq 2$, then $\mathcal{D} $ and $\mathcal{G} $ are ($\phi $, $\varphi $)\HH derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras. (English)
Keyword: Prime ring
Keyword: semiprime ring
Keyword: Banach algebra
Keyword: Jordan derivation
Keyword: $(\phi, \varphi )$-derivation
MSC: 16N60
MSC: 16W25
MSC: 46J10
idZBL: Zbl 07484374
idMR: MR4355419
.
Date available: 2022-01-10T10:01:47Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149323
.
Reference: [1] Ashraf, M., Rehman, N., Ali, S.: On Lie ideals and Jordan generalized derivations of prime rings.Indian Journal of Pure & Applied Mathematics, 34, 2, 2003, 291-294, King Abdulaziz University, MR 1964528
Reference: [2] Ashraf, M., Rehman, N.: On Jordan ideals and Jordan derivations of a prime rings.Demonstratio Mathematica, 37, 2, 2004, 275-284, MR 2093532, 10.1515/dema-2004-0303
Reference: [3] Bonsall, F.F., Duncan, J.: Complete Normed Algebras.1973, Springer-Verlag, New York, Zbl 0271.46039
Reference: [4] Brešar, M.: Jordan derivations on semiprime rings.Proceedings of the American Mathematical Society, 104, 4, 1988, 1003-1006, 10.1090/S0002-9939-1988-0929422-1
Reference: [5] Brešar, M.: Jordan mappings of semiprime rings.Journal of Algebra, 127, 1, 1989, 218-228, Elsevier, 10.1016/0021-8693(89)90285-8
Reference: [6] Brešar, M., Vukman, J.: Jordan derivations on prime rings.Bulletin of the Australian Mathematical Society, 37, 3, 1988, 321-322, Cambridge University Press, 10.1017/S0004972700026927
Reference: [7] Brešar, M., Vukman, J.: Jordan ($\theta $, $\phi $)-derivations.Glasnik Matematicki, 16, 1991, 13-17,
Reference: [8] Cusack, J.M.: Jordan derivations on rings.Proceedings of the American Mathematical Society, 53, 2, 1975, 321-324, 10.1090/S0002-9939-1975-0399182-5
Reference: [9] Fošner, A., Vukman, J.: On certain functional equations related to Jordan triple $(\theta ,\phi )$-derivations on semiprime rings.Monatshefte für Mathematik, 162, 2, 2011, 157-165, Springer, MR 2769884, 10.1007/s00605-009-0154-7
Reference: [10] Herstein, I.N.: Jordan derivations of prime rings.Proceedings of the American Mathematical Society, 8, 6, 1957, 1104-1110, JSTOR,
Reference: [11] Liu, C. K., Shiue, W. K.: Generalized Jordan triple $(\theta ,\phi )$-derivations on semiprime rings.Taiwanese Journal of Mathematics, 11, 5, 2007, 1397-1406, The Mathematical Society of the Republic of China, MR 2368657
Reference: [12] Rehman, N., Širovnik, N., Bano, T.: On certain functional equations on standard operator algebras.Mediterranean Journal of Mathematics, 14, 1, 2017, 1-10, Springer, MR 3589928, 10.1007/s00009-016-0823-4
Reference: [13] Rehman, N., Bano, T.: A result on functional equations in semiprime rings and standard operator algebras.Acta Mathematica Universitatis Comenianae, 85, 1, 2016, 21-28, MR 3456519
Reference: [14] Širovnik, N.: On certain functional equation in semiprime rings and standard operator algebras.Cubo (Temuco), 16, 1, 2014, 73-80, Universidad de La Frontera. Departamento de Matemática y Estadística., MR 3185789
Reference: [15] Širovnik, N., Vukman, J.: On certain functional equation in semiprime rings.Algebra Colloquium, 23, 1, 2016, 65-70, World Scientific, MR 3439878
Reference: [16] Širovnik, N.: On functional equations related to derivations in semiprime rings and standard operator algebras.Glasnik Matematički, 47, 1, 2012, 95-104, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu,
Reference: [17] Vukman, J.: Some remarks on derivations in semiprime rings and standard operator algebras.Glasnik Matematički, 46, 1, 2011, 43-48, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu,
Reference: [18] Vukman, J.: Identities with derivations and automorphisms on semiprime rings.International Journal of Mathematics and Mathematical Sciences, 2005, 7, 2005, 1031-1038, Hindawi, MR 2170502, 10.1155/IJMMS.2005.1031
Reference: [19] Vukman, J.: Identities related to derivations and centralizers on standard operator algebras.Taiwanese Journal of Mathematics, 11, 1, 2007, 255-265, The Mathematical Society of the Republic of China, MR 2304020, 10.11650/twjm/1500404650
Reference: [20] Vukman, J., Kosi-Ulbl, I.: A note on derivations in semiprime rings.International Journal of Mathematics and Mathematical Sciences, 2005, 20, 2005, 3347-3350, Hindawi, MR 2208058, 10.1155/IJMMS.2005.3347
.

Files

Files Size Format View
ActaOstrav_29-2021-3_4.pdf 342.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo