Previous |  Up |  Next

Article

Title: Retracts that are kernels of locally nilpotent derivations (English)
Author: Liu, Dayan
Author: Sun, Xiaosong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 191-199
Summary lang: English
.
Category: math
.
Summary: Let $k$ be a field of characteristic zero and $B$ a $k$-domain. Let $R$ be a retract of $B$ being the kernel of a locally nilpotent derivation of $B$. We show that if $B=R\oplus I$ for some principal ideal $I$ (in particular, if $B$ is a UFD), then $B= R^{[1]}$, i.e., $B$ is a polynomial algebra over $R$ in one variable. It is natural to ask that, if a retract $R$ of a $k$-UFD $B$ is the kernel of two commuting locally nilpotent derivations of $B$, then does it follow that $B\cong R^{[2]}$? We give a negative answer to this question. The interest in retracts comes from the fact that they are closely related to Zariski's cancellation problem and the Jacobian conjecture in affine algebraic geometry. (English)
Keyword: retract
Keyword: locally nilpotent derivation
Keyword: kernel
Keyword: Zariski's cancellation problem
MSC: 13N15
MSC: 14R10
idZBL: Zbl 07511561
idMR: MR4389114
DOI: 10.21136/CMJ.2021.0388-20
.
Date available: 2022-03-25T08:29:58Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149581
.
Reference: [1] Abhyankar, S. S., Moh, T.-t.: Embeddings of the line in the plane.J. Reine Angew. Math. 276 (1975), 148-166. Zbl 0332.14004, MR 0379502, 10.1515/crll.1975.276.148
Reference: [2] Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N.: Some results on retracts of polynomial rings.J. Algebra 567 (2021), 243-268. Zbl 1468.13060, MR 4158731, 10.1016/j.jalgebra.2020.08.030
Reference: [3] Costa, D. L.: Retracts of polynomial rings.J. Algebra 44 (1977), 492-502. Zbl 0352.13008, MR 0429866, 10.1016/0021-8693(77)90197-1
Reference: [4] Craighero, P. C.: A result on $m$-flats in $\mathbb{A}_k^n$.Rend. Semin. Mat. Univ. Padova 75 (1986), 39-46. Zbl 0601.14010, MR 0847656
Reference: [5] Das, P., Dutta, A. K.: On codimension-one $\mathbb{A}^1$-fibration with retraction.J. Commut. Algebra 3 (2011), 207-224. Zbl 1241.13004, MR 2813472, 10.1216/JCA-2011-3-2-207
Reference: [6] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations.Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). Zbl 1391.13001, MR 3700208, 10.1007/978-3-662-55350-3
Reference: [7] Gong, S.-J., Yu, J.-T.: Test elements, retracts and automorphic orbits.J. Algebra 320 (2008), 3062-3068. Zbl 1159.16018, MR 2442010, 10.1016/j.jalgebra.2008.07.012
Reference: [8] Gupta, N.: On the cancellation problem for the affine space $\mathbb{A}^3$ in characteristic $p$.Invent. Math. 195 (2014), 279-288. Zbl 1309.14050, MR 3148104, 10.1007/s00222-013-0455-2
Reference: [9] Gupta, N.: On the family of affine threefolds $x^my=F(x,z,t)$.Compos. Math. 150 (2014), 979-998. Zbl 1327.14251, MR 3223879, 10.1112/S0010437X13007793
Reference: [10] Gupta, N.: On Zariski's cancellation problem in positive characteristic.Adv. Math. 264 (2014), 296-307. Zbl 1325.14078, MR 3250286, 10.1016/j.aim.2014.07.012
Reference: [11] Jelonek, Z.: The extension of regular and rational embeddings.Math. Ann. 277 (1987), 113-120. Zbl 0611.14010, MR 0884649, 10.1007/BF01457281
Reference: [12] Liu, D., Sun, X.: A class of retracts of polynomial algebras.J. Pure Appl. Algebra 222 (2018), 382-386. Zbl 1387.14147, MR 3694460, 10.1016/j.jpaa.2017.04.009
Reference: [13] Mikhalev, A. A., Shpilrain, V., Yu, J.-T.: Combinatorial Methods: Free Groups, Polynomials, and Free Algebras.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 19. Springer, New York (2004). Zbl 1039.16024, MR 2014326, 10.1007/978-0-387-21724-6
Reference: [14] Nagamine, T.: A note on retracts of polynomial rings in three variables.J. Algebra 534 (2019), 339-343. Zbl 1423.13063, MR 3979078, 10.1016/j.jalgebra.2019.05.040
Reference: [15] Shpilrain, V., Yu, J.-T.: Polynomial retracts and the Jacobian conjecture.Trans. Am. Math. Soc. 352 (2000), 477-484. Zbl 0944.13011, MR 1487631, 10.1090/S0002-9947-99-02251-5
Reference: [16] Sun, X.: Automorphisms of the endomorphism semigroup of a free algebra.Int. J. Algebra Comput. 25 (2015), 1223-1238. Zbl 1345.08007, MR 3438159, 10.1142/S0218196715500381
Reference: [17] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace $C^2$.J. Math. Soc. Japan 26 (1974), 241-257 French. Zbl 0276.14001, MR 0338423, 10.2969/jmsj/02620241
Reference: [18] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture.Progress in Mathematics 190. Birkhäuser, Basel (2000). Zbl 0962.14037, MR 1790619, 10.1007/978-3-0348-8440-2
Reference: [19] Essen, A. van den: Around the cancellation problem.Affine Algebraic Geometry Osaka University Press, Osaka (2007), 463-481. Zbl 1129.14086, MR 2330485
Reference: [20] Yu, J.-T.: Automorphic orbit problem for polynomial algebras.J. Algebra 319 (2008), 966-970. Zbl 1132.13008, MR 2379089, 10.1016/j.jalgebra.2007.03.033
.

Files

Files Size Format View
CzechMathJ_72-2022-1_11.pdf 238.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo