Title:
|
On the conjugate type vector and the structure of a normal subgroup (English) |
Author:
|
Chen, Ruifang |
Author:
|
Guo, Lujun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
201-207 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$. (English) |
Keyword:
|
index |
Keyword:
|
conjugacy class size |
Keyword:
|
Baer group |
MSC:
|
20D60 |
MSC:
|
20E45 |
idZBL:
|
Zbl 07511562 |
idMR:
|
MR4389115 |
DOI:
|
10.21136/CMJ.2021.0395-20 |
. |
Date available:
|
2022-03-25T08:30:21Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149582 |
. |
Reference:
|
[1] Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M.: Normal subgroups and $p$-regular $G$-class sizes.J. Algebra 336 (2011), 236-241. Zbl 1241.20034, MR 2802540, 10.1016/j.jalgebra.2011.04.004 |
Reference:
|
[2] Baer, R.: Group elements of prime power index.Trans. Am. Math. Soc. 75 (1953), 20-47. Zbl 0051.25702, MR 55340, 10.1090/S0002-9947-1953-0055340-0 |
Reference:
|
[3] Beltrán, A., Felipe, M. J.: Finite groups with a disconnected $p$-regular conjugacy class graph.Commun. Algebra 32 (2004), 3503-3516. Zbl 1081.20040, MR 2097475, 10.1081/AGB-120039627 |
Reference:
|
[4] Bertram, E. A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups.Bull. London Math. Soc. 22 (1990), 569-575. Zbl 0743.20017, MR 1099007, 10.1112/blms/22.6.569 |
Reference:
|
[5] Camina, A. R.: Arithmetical conditions on the conjugacy class numbers of a finite group.J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. Zbl 0242.20025, MR 0294481, 10.1112/jlms/s2-5.1.127 |
Reference:
|
[6] Camina, A. R.: Finite groups of conjugate rank 2.Nagoya Math. J. 53 (1974), 47-57. Zbl 0255.20014, MR 346054, 10.1017/S0027763000016019 |
Reference:
|
[7] Camina, A. R., Camina, R. D.: Implications of conjugacy class size.J. Group Theory 1 (1998), 257-269. Zbl 0916.20015, MR 1633180, 10.1515/jgth.1998.017 |
Reference:
|
[8] Camina, A. R., Camina, R. D.: Recognizing direct products from their conjugate type vectors.J. Algebra 234 (2000), 604-608. Zbl 0968.20017, MR 1800744, 10.1006/jabr.2000.8535 |
Reference:
|
[9] Itô, N.: On finite groups with given conjugate types. I.Nagoya Math. J. 6 (1953), 17-28. Zbl 0053.01202, MR 61597, 10.1017/S0027763000016937 |
Reference:
|
[10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction.Universitext. Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433 |
Reference:
|
[11] Zhao, X., Guo, X.: On the normal subgroup with exactly two $G$-conjugacy class sizes.Chin. Ann. Math., Ser. B 30 (2009), 427-432. Zbl 1213.20031, MR 2529448, 10.1007/s11401-008-0088-8 |
. |