Previous |  Up |  Next

Article

Title: On the conjugate type vector and the structure of a normal subgroup (English)
Author: Chen, Ruifang
Author: Guo, Lujun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 201-207
Summary lang: English
.
Category: math
.
Summary: Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$. (English)
Keyword: index
Keyword: conjugacy class size
Keyword: Baer group
MSC: 20D60
MSC: 20E45
idZBL: Zbl 07511562
idMR: MR4389115
DOI: 10.21136/CMJ.2021.0395-20
.
Date available: 2022-03-25T08:30:21Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149582
.
Reference: [1] Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M.: Normal subgroups and $p$-regular $G$-class sizes.J. Algebra 336 (2011), 236-241. Zbl 1241.20034, MR 2802540, 10.1016/j.jalgebra.2011.04.004
Reference: [2] Baer, R.: Group elements of prime power index.Trans. Am. Math. Soc. 75 (1953), 20-47. Zbl 0051.25702, MR 55340, 10.1090/S0002-9947-1953-0055340-0
Reference: [3] Beltrán, A., Felipe, M. J.: Finite groups with a disconnected $p$-regular conjugacy class graph.Commun. Algebra 32 (2004), 3503-3516. Zbl 1081.20040, MR 2097475, 10.1081/AGB-120039627
Reference: [4] Bertram, E. A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups.Bull. London Math. Soc. 22 (1990), 569-575. Zbl 0743.20017, MR 1099007, 10.1112/blms/22.6.569
Reference: [5] Camina, A. R.: Arithmetical conditions on the conjugacy class numbers of a finite group.J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. Zbl 0242.20025, MR 0294481, 10.1112/jlms/s2-5.1.127
Reference: [6] Camina, A. R.: Finite groups of conjugate rank 2.Nagoya Math. J. 53 (1974), 47-57. Zbl 0255.20014, MR 346054, 10.1017/S0027763000016019
Reference: [7] Camina, A. R., Camina, R. D.: Implications of conjugacy class size.J. Group Theory 1 (1998), 257-269. Zbl 0916.20015, MR 1633180, 10.1515/jgth.1998.017
Reference: [8] Camina, A. R., Camina, R. D.: Recognizing direct products from their conjugate type vectors.J. Algebra 234 (2000), 604-608. Zbl 0968.20017, MR 1800744, 10.1006/jabr.2000.8535
Reference: [9] Itô, N.: On finite groups with given conjugate types. I.Nagoya Math. J. 6 (1953), 17-28. Zbl 0053.01202, MR 61597, 10.1017/S0027763000016937
Reference: [10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction.Universitext. Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433
Reference: [11] Zhao, X., Guo, X.: On the normal subgroup with exactly two $G$-conjugacy class sizes.Chin. Ann. Math., Ser. B 30 (2009), 427-432. Zbl 1213.20031, MR 2529448, 10.1007/s11401-008-0088-8
.

Files

Files Size Format View
CzechMathJ_72-2022-1_12.pdf 205.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo