Previous |  Up |  Next

Article

Title: The strong persistence property and symbolic strong persistence property (English)
Author: Nasernejad, Mehrdad
Author: Khashyarmanesh, Kazem
Author: Roberts, Leslie G.
Author: Toledo, Jonathan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 209-237
Summary lang: English
.
Category: math
.
Summary: Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property. (English)
Keyword: strong persistence property
Keyword: associated prime
Keyword: cover ideal
Keyword: symbolic strong persistence property
MSC: 05C25
MSC: 05E40
MSC: 13A30
MSC: 13B25
MSC: 13C13
MSC: 13P25
idZBL: Zbl 07511563
idMR: MR4389116
DOI: 10.21136/CMJ.2021.0407-20
.
Date available: 2022-03-25T08:30:59Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149583
.
Reference: [1] Brodmann, M.: Asymptotic stability of $Ass(M/I^{n}M)$.Proc. Am. Math. Soc. 74 (1979), 16-18. Zbl 0372.13010, MR 0521865, 10.1090/S0002-9939-1979-0521865-8
Reference: [2] Cooper, S. M., Embree, R. J. D., Hà, H. T., Hoefel, A. H.: Symbolic powers of monomial ideals.Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 39-55. Zbl 1376.13010, MR 3589840, 10.1017/S0013091516000110
Reference: [3] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals.J. Algebra 331 (2011), 224-242. Zbl 1227.13016, MR 2774655, 10.1016/j.jalgebra.2010.10.025
Reference: [4] Gitler, I., Reyes, E., Villarreal, R. H.: Blowup algebras of ideals of vertex covers of bipartite graphs.Algebraic Structures and Their Representations Contemporary Mathematics 376. American Mathematical Society, Providence (2005), 273-279. Zbl 1096.13004, MR 2147027, 10.1090/conm/376
Reference: [5] Grayson, D. R., Stillman, M. E., Eisenbund, D.: Macaulay2: A software system for research in algebraic geometry.Available at http://www.math.uiuc.edu/Macaulay2/.
Reference: [6] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260. Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6
Reference: [7] Herzog, J., Qureshi, A. A.: Persistence and stability properties of powers of ideals.J. Pure Appl. Algebra 219 (2015), 530-542. Zbl 1305.13005, MR 3279372, 10.1016/j.jpaa.2014.05.011
Reference: [8] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals.Arch. Math. 94 (2010), 327-337. Zbl 1191.13032, MR 2643966, 10.1007/s00013-010-0112-6
Reference: [9] Kaiser, T., Stehlík, M., Škrekovski, R.: Replication in critical graphs and the persistence of monomial ideals.J. Comb. Theory, Ser. A 123 (2014), 239-251. Zbl 1281.05062, MR 3157809, 10.1016/j.jcta.2013.12.005
Reference: [10] Khashyarmanesh, K., Nasernejad, M.: On the stable set of associated prime ideals of monomial ideals and square-free monomial ideals.Commun. Algebra 42 (2014), 3753-3759. Zbl 1338.13021, MR 3200056, 10.1080/00927872.2013.793696
Reference: [11] Khashyarmanesh, K., Nasernejad, M.: Some results on the associated primes of monomial ideals.Southeast Asian Bull. Math. 39 (2015), 439-451. MR 3410220
Reference: [12] Martínez-Bernal, J., Morey, S., Villarreal, R. H.: Associated primes of powers of edge ideals.Collect. Math. 63 (2012), 361-374. Zbl 1360.13027, MR 2957976, 10.1007/s13348-011-0045-9
Reference: [13] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). Zbl 0603.13001, MR 0879273, 10.1017/cbo9781139171762
Reference: [14] Mohammadi, F., Kiani, D.: Sequentially Cohen-Macaulay graphs of form $\theta_{n_1, \ldots, n_k}$.Bull. Iran. Math. Soc. 36 (2010), 109-118. Zbl 1230.05248, MR 2790917
Reference: [15] Nasernejad, M.: Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications.J. Algebra Relat. Top. 2 (2014), 15-25. Zbl 1316.13015
Reference: [16] Nasernejad, M.: Persistence property for some classes of monomial ideals of a polynomial ring.J. Algebra Appl. 16 (2017), Article ID 1750105, 17 pages. Zbl 1365.13033, MR 3635135, 10.1142/S0219498817501055
Reference: [17] Nasernejad, M., Khashyarmanesh, K.: On the Alexander dual of the path ideals of rooted and unrooted trees.Commun. Algebra 45 (2017), 1853-1864. Zbl 1372.13008, MR 3582830, 10.1080/00927872.2016.1226855
Reference: [18] Nasernejad, M., Khashyarmanesh, K., Al-Ayyoub, I.: Associated primes of powers of cover ideals under graph operations.Commun. Algebra 47 (2019), 1985-1996. Zbl 1441.05107, MR 3977715, 10.1080/00927872.2018.1527920
Reference: [19] Rajaee, S., Nasernejad, M., Al-Ayyoub, I.: Superficial ideals for monomial ideals.J. Algebra Appl. 17 (2018), Article ID 1850102, 28 pages. Zbl 1393.13020, MR 3805713, 10.1142/S0219498818501025
Reference: [20] L. J. Ratliff, Jr.: On prime divisors of $I^n$, $n$ large.Mich. Math. J. 23 (1976), 337-352. Zbl 0332.13001, MR 0457421, 10.1307/mmj/1029001769
Reference: [21] Reyes, E., Toledo, J.: On the strong persistence property for monomial ideals.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 293-305. Zbl 1449.13012, MR 3701891
Reference: [22] Villarreal, R. H.: Monomial Algebras.Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). Zbl 1325.13004, MR 3362802, 10.1201/b18224
.

Files

Files Size Format View
CzechMathJ_72-2022-1_13.pdf 389.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo