Previous |  Up |  Next

Article

Keywords:
strong persistence property; associated prime; cover ideal; symbolic strong persistence property
Summary:
Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
References:
[1] Brodmann, M.: Asymptotic stability of $Ass(M/I^{n}M)$. Proc. Am. Math. Soc. 74 (1979), 16-18. DOI 10.1090/S0002-9939-1979-0521865-8 | MR 0521865 | Zbl 0372.13010
[2] Cooper, S. M., Embree, R. J. D., Hà, H. T., Hoefel, A. H.: Symbolic powers of monomial ideals. Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 39-55. DOI 10.1017/S0013091516000110 | MR 3589840 | Zbl 1376.13010
[3] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals. J. Algebra 331 (2011), 224-242. DOI 10.1016/j.jalgebra.2010.10.025 | MR 2774655 | Zbl 1227.13016
[4] Gitler, I., Reyes, E., Villarreal, R. H.: Blowup algebras of ideals of vertex covers of bipartite graphs. Algebraic Structures and Their Representations Contemporary Mathematics 376. American Mathematical Society, Providence (2005), 273-279. DOI 10.1090/conm/376 | MR 2147027 | Zbl 1096.13004
[5] Grayson, D. R., Stillman, M. E., Eisenbund, D.: Macaulay2: A software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[6] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). DOI 10.1007/978-0-85729-106-6 | MR 2724673 | Zbl 1206.13001
[7] Herzog, J., Qureshi, A. A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219 (2015), 530-542. DOI 10.1016/j.jpaa.2014.05.011 | MR 3279372 | Zbl 1305.13005
[8] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals. Arch. Math. 94 (2010), 327-337. DOI 10.1007/s00013-010-0112-6 | MR 2643966 | Zbl 1191.13032
[9] Kaiser, T., Stehlík, M., Škrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Comb. Theory, Ser. A 123 (2014), 239-251. DOI 10.1016/j.jcta.2013.12.005 | MR 3157809 | Zbl 1281.05062
[10] Khashyarmanesh, K., Nasernejad, M.: On the stable set of associated prime ideals of monomial ideals and square-free monomial ideals. Commun. Algebra 42 (2014), 3753-3759. DOI 10.1080/00927872.2013.793696 | MR 3200056 | Zbl 1338.13021
[11] Khashyarmanesh, K., Nasernejad, M.: Some results on the associated primes of monomial ideals. Southeast Asian Bull. Math. 39 (2015), 439-451. MR 3410220
[12] Martínez-Bernal, J., Morey, S., Villarreal, R. H.: Associated primes of powers of edge ideals. Collect. Math. 63 (2012), 361-374. DOI 10.1007/s13348-011-0045-9 | MR 2957976 | Zbl 1360.13027
[13] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). DOI 10.1017/cbo9781139171762 | MR 0879273 | Zbl 0603.13001
[14] Mohammadi, F., Kiani, D.: Sequentially Cohen-Macaulay graphs of form $\theta_{n_1, \ldots, n_k}$. Bull. Iran. Math. Soc. 36 (2010), 109-118. MR 2790917 | Zbl 1230.05248
[15] Nasernejad, M.: Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications. J. Algebra Relat. Top. 2 (2014), 15-25. Zbl 1316.13015
[16] Nasernejad, M.: Persistence property for some classes of monomial ideals of a polynomial ring. J. Algebra Appl. 16 (2017), Article ID 1750105, 17 pages. DOI 10.1142/S0219498817501055 | MR 3635135 | Zbl 1365.13033
[17] Nasernejad, M., Khashyarmanesh, K.: On the Alexander dual of the path ideals of rooted and unrooted trees. Commun. Algebra 45 (2017), 1853-1864. DOI 10.1080/00927872.2016.1226855 | MR 3582830 | Zbl 1372.13008
[18] Nasernejad, M., Khashyarmanesh, K., Al-Ayyoub, I.: Associated primes of powers of cover ideals under graph operations. Commun. Algebra 47 (2019), 1985-1996. DOI 10.1080/00927872.2018.1527920 | MR 3977715 | Zbl 1441.05107
[19] Rajaee, S., Nasernejad, M., Al-Ayyoub, I.: Superficial ideals for monomial ideals. J. Algebra Appl. 17 (2018), Article ID 1850102, 28 pages. DOI 10.1142/S0219498818501025 | MR 3805713 | Zbl 1393.13020
[20] L. J. Ratliff, Jr.: On prime divisors of $I^n$, $n$ large. Mich. Math. J. 23 (1976), 337-352. DOI 10.1307/mmj/1029001769 | MR 0457421 | Zbl 0332.13001
[21] Reyes, E., Toledo, J.: On the strong persistence property for monomial ideals. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 293-305. MR 3701891 | Zbl 1449.13012
[22] Villarreal, R. H.: Monomial Algebras. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). DOI 10.1201/b18224 | MR 3362802 | Zbl 1325.13004
Partner of
EuDML logo