Previous |  Up |  Next

Article

Keywords:
Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
Summary:
Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers.
References:
[1] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. I. Compos. Math. 150 (2014), 729-748. DOI 10.1112/S0010437X13007653 | MR 3209793 | Zbl 1304.11040
[2] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. II. Ann. Math. (2) 181 (2015), 303-359. DOI 10.4007/annals.2015.181.1.5 | MR 3272927 | Zbl 1339.11060
[3] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166 (2017), 325-402. DOI 10.1215/00127094-3714971 | MR 3600753 | Zbl 1372.11054
[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. DOI 10.1007/BF02684373 | MR 0340258 | Zbl 0287.14001
[5] Fomenko, O. M.: Fourier coefficients of cusp forms and automorphic $L$-functions. J. Math. Sci., New York 95 (1999), 2295-2316. DOI 10.1007/BF02172473 | MR 1691291 | Zbl 0993.11023
[6] Gelbart, S., Jacquet, H.: A relation between automorphic representations of $GL(2)$ and $GL(3)$. Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. DOI 10.24033/asens.1355 | MR 0533066 | Zbl 0406.10022
[7] Hecke, E.: Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German \99999JFM99999 53.0345.02. DOI 10.1007/BF02952521 | MR 3069476
[8] Huang, B.: On the Rankin-Selberg problem. Math. Ann. 381 (2021), 1217-1251. DOI 10.1007/s00208-021-02186-7 | MR 4333413 | Zbl 1483.11098
[9] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). DOI 10.1090/coll/053 | MR 2061214 | Zbl 1059.11001
[10] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A.: Rankin-Selberg convolutions. I. Am. J. Math. 105 (1983), 367-464. DOI 10.2307/2374264 | MR 0701565 | Zbl 0525.22018
[11] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103 (1981), 499-558. DOI 10.2307/2374103 | MR 0618323 | Zbl 0473.12008
[12] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103 (1981), 777-815. DOI 10.2307/2374050 | MR 0623137 | Zbl 0491.10020
[13] Kim, H. H.: Functoriality for the exterior square of $GL_{4}$ and symmetric fourth of $GL_{2}$. J. Am. Math. Soc. 16 (2003), 139-183. DOI 10.1090/S0894-0347-02-00410-1 | MR 1937203 | Zbl 1018.11024
[14] Kim, H. H., Shahidi, F.: Cuspidality of symmetric power with applications. Duke Math. J. 112 (2002), 177-197. DOI 10.1215/S0012-9074-02-11215-0 | MR 1890650 | Zbl 1074.11027
[15] Kim, H. H., Shahidi, F.: Functorial products for $GL_{2}\times GL_{3}$ and the symmetric cube for $GL_{2}$. Ann. Math. (2) 155 (2002), 837-893. DOI 10.2307/3062134 | MR 1923967 | Zbl 1040.11036
[16] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[17] Lü, G.: On higher moments of Fourier coefficients of holomorphic cusp forms. II. Montash. Math. 169 (2013), 409-422. DOI 10.1007/s00605-012-0381-1 | MR 3019292 | Zbl 1287.11059
[18] Lü, G., Sankaranarayanan, A.: Higher moments of Fourier coefficients of cusp forms. Can. Math. Bull. 58 (2015), 548-560. DOI 10.4153/CMB-2015-031-1 | MR 3372871 | Zbl 1385.11021
[19] Moreno, C. J., Shahidi, F.: The fourth moment of Ramanujan $\tau$-function. Math. Ann. 266 (1983), 233-239. DOI 10.1007/BF01458445 | MR 0724740 | Zbl 0508.10014
[20] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. DOI 10.1007/s10240-021-00127-3 | MR 4349240 | Zbl 07458825
[21] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. DOI 10.1007/s10240-021-00126-4 | MR 4349241 | Zbl 07458826
[22] Ramakrishnan, D.: Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $SL(2)$. Ann. Math. (2) 152 (2000), 45-111. DOI 10.2307/2661379 | MR 1792292 | Zbl 0989.11023
[23] Ramakrishnan, D., Wang, S.: A cuspidality criterion for the functorial product on $GL(2)\times GL(3)$ with a cohomological application. Int. Math. Res. Not. 27 (2004), 1355-1394. DOI 10.1155/S1073792804132856 | MR 2052020 | Zbl 1089.11029
[24] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 35 (1939), 357-372. DOI 10.1017/S0305004100021101 | MR 0000411 | Zbl 0021.39202
[25] Rankin, R. A.: Sums of cusp form coefficients. Automorphic Forms and Anallytic Number Theory University of Montréal, Montréal (1990), 115-121. MR 1111014 | Zbl 0735.11023
[26] Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory. Duke Math. J. 81 (1996), 269-322. DOI 10.1215/S0012-7094-96-08115-6 | MR 1395406 | Zbl 0866.11050
[27] Selberg, A.: Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50 German. MR 0002626 | Zbl 0023.22201
[28] Shahidi, F.: On certain $L$-functions. Am. J. Math. 103 (1981), 297-355. DOI 10.2307/2374219 | MR 0610479 | Zbl 0467.12013
[29] Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for $GL(n)$. Am. J. Math. 106 (1984), 67-111. DOI 10.2307/2374430 | MR 0729755 | Zbl 0567.22008
[30] Shahidi, F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52 (1985), 973-1007. DOI 10.1215/S0012-7094-85-05252-4 | MR 0816396 | Zbl 0674.10027
[31] Shahidi, F.: Third symmetric power $L$-functions for $GL(2)$. Compos. Math. 70 (1989), 245-273. MR 1002045 | Zbl 0684.10026
[32] Shahidi, F.: A proof of Langlands' conjecture on Plancherel measures; complementary series for $p$-adic groups. Ann. Math. (2) 132 (1990), 273-330. DOI 10.2307/1971524 | MR 1070599 | Zbl 0780.22005
[33] Wilton, J. R.: A note on Ramanujan's arithmetical function $\tau(n)$. Proc. Camb. Philos. Soc. 25 (1929), 121-129 \99999JFM99999 55.0709.02. DOI 10.1017/S0305004100018636 | MR 3194792
[34] Wu, J.: Power sums of Hecke eigenvalues and application. Acta Arith. 137 (2009), 333-344. DOI 10.4064/aa137-4-3 | MR 2506587 | Zbl 1232.11054
Partner of
EuDML logo