Previous |  Up |  Next

Article

Keywords:
Artin $L$-function; monomial group; almost monomial group; supercharacter theory
Summary:
We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin's conjecture regarding the holomorphy of Artin $L$-functions.
References:
[1] Aramata, H.: Über die Teilbarkeit der Dedekindschen Zetafunktionen. Proc. Imp. Acad. Jap. 9 (1933), 31-34 German. DOI 10.3792/pia/1195580866 | MR 1568340 | Zbl 0006.39703
[2] Artin, E.: Über eine neue Art von $L$-Reihen. Abh. Math. Semin. Univ. Hamb. 3 (1924), 89-108 German \99999JFM99999 49.0123.01. DOI 10.1007/BF02954618 | MR 3069421
[3] Artin, E.: Zur Theorie der $L$-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Semin. Univ. Hamb. 8 (1931), 292-306 German \99999JFM99999 56.0173.02. DOI 10.1007/BF02941010 | MR 3069563
[4] Brauer, R.: On the zeta-functions of algebraic number fields. Am. J. Math. 69 (1947), 243-250. DOI 10.2307/2371849 | MR 0020597 | Zbl 0029.01502
[5] Bruns, W., Gubeladze, J.: Polytopes, Rings and $K$-Theory. Springer Monographs in Mathematics. Springer, New York (2009). DOI 10.1007/b105283 | MR 2508056 | Zbl 1168.13001
[6] Cimpoeaş, M., Nicolae, F.: Independence of Artin $L$-functions. Forum Math. 31 (2019), 529-534. DOI 10.1515/forum-2018-0185 | MR 3918455 | Zbl 1428.11154
[7] Cimpoeaş, M., Nicolae, F.: Artin $L$-functions to almost monomial Galois groups. Forum Math. 32 (2020), 937-940. DOI 10.1515/forum-2019-0288 | MR 4116648 | Zbl 1444.11226
[8] Diaconis, P., Isaacs, I. M.: Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360 (2008), 2359-2392. DOI 10.1090/S0002-9947-07-04365-6 | MR 2373317 | Zbl 1137.20008
[9] Group, GAP: GAP - Groups, Algorithms, Programming. Version 4.11.1. Available at https://www.gap-system.org/ (2021).
[10] Hendrickson, A. O. F.: Supercharacter theory constructions corresponding to Schur ring products. Commun. Algebra 40 (2012), 4420-4438. DOI 10.1080/00927872.2011.602999 | MR 2989654 | Zbl 1272.20005
[11] Marberg, E.: A supercharacter analogue for normality. J. Algebra 332 (2011), 334-365. DOI 10.1016/j.jalgebra.2011.02.019 | MR 2774691 | Zbl 1243.20011
[12] Nicolae, F.: On Artin's $L$-functions. I. J. Reine Angew. Math. 539 (2001), 179-184. DOI 10.1515/crll.2001.073 | MR 1863859 | Zbl 1013.11077
[13] Nicolae, F.: On the semigroup of Artin's $L$-functions holomorphic at $s_0$. J. Number Theory 128 (2008), 2861-2864. DOI 10.1016/j.jnt.2008.07.001 | MR 2457840 | Zbl 1176.11058
[14] Nicolae, F.: On holomorphic Artin $L$-functions. Monatsh. Math. 186 (2018), 679-683. DOI 10.1007/s00605-017-1120-4 | MR 3829218 | Zbl 1404.11130
[15] Taketa, K.: Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen. Proc. Imp. Acad. Japan 6 (1930), 31-33 German \99999JFM99999 56.0133.03. DOI 10.3792/pia/1195581421 | MR 1568284
[16] Wong, P.-J.: Supercharacters and the Chebotarev density theorem. Acta Arith. 185 (2018), 281-295. DOI 10.4064/aa180320-22-6 | MR 3858390 | Zbl 1415.11172
Partner of
EuDML logo