Previous |  Up |  Next

Article

Title: On the least almost-prime in arithmetic progression (English)
Author: Li, Jinjiang
Author: Zhang, Min
Author: Cai, Yingchun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 177-188
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $$ \mathcal {P}_2(a,q)\ll q^{1.8345}. $$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$. (English)
Keyword: almost-prime
Keyword: arithmetic progression
Keyword: linear sieve
Keyword: Selberg's $\Lambda ^2$-sieve
MSC: 11N13
MSC: 11N35
MSC: 11N36
idZBL: Zbl 07655761
idMR: MR4541095
DOI: 10.21136/CMJ.2022.0478-21
.
Date available: 2023-02-03T11:11:24Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151510
.
Reference: [1] Halberstam, H., Richert, H.-E.: Sieve Methods.London Mathematical Society Monographs 4. Academic Press, London (1974). Zbl 0298.10026, MR 0424730
Reference: [2] Iwaniec, H.: A new form of the error term in the linear sieve.Acta Arith. 37 (1980), 307-320. Zbl 0444.10038, MR 0598883, 10.4064/aa-37-1-307-320
Reference: [3] Iwaniec, H.: On the Brun-Titchmarsh theorem.J. Math. Soc. Japan 34 (1982), 95-123. Zbl 0486.10033, MR 0639808, 10.2969/jmsj/03410095
Reference: [4] Jurkat, W. B., Richert, H.-E.: An improvement of Selberg's sieve method. I.Acta Arith. 11 (1965), 217-240. Zbl 0128.26902, MR 0202680, 10.4064/aa-11-2-217-240
Reference: [5] Levin, B. V.: On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$.Usp. Mat. Nauk 20 (1965), 158-162 Russian. Zbl 0154.30002, MR 0188173
Reference: [6] Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie: Über die Vertheilung der Primzahlen.J. Reine Angew. Math. 78 (1874), 46-63 German \99999JFM99999 06.0116.01. MR 1579612, 10.1515/crll.1874.78.46
Reference: [7] Motohashi, Y.: On almost-primes in arithmetic progressions. III.Proc. Japan Acad. 52 (1976), 116-118. Zbl 0361.10039, MR 0412128, 10.3792/pja/1195518371
Reference: [8] Pan, C. D., Pan, C. B.: Goldbach Conjecture.Science Press, Beijing (1992). Zbl 0849.11080, MR 1287852
Reference: [9] Titchmarsh, E. C.: A divisor problem.Rend. Circ. Mat. Palermo 54 (1930), 414-429 \99999JFM99999 56.0891.01. 10.1007/BF03021203
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo