Previous |  Up |  Next

Article

Title: Root location for the characteristic polynomial of a Fibonacci type sequence (English)
Author: Du, Zhibin
Author: da Fonseca, Carlos M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 189-195
Summary lang: English
.
Category: math
.
Summary: We analyse the roots of the polynomial $x^n-px^{n-1}-qx-1$ for $p\geqslant q\geqslant 1$. This is the characteristic polynomial of the recurrence relation $F_{k,p,q}(n) = pF_{k,p,q}(n- \nobreak 1) + qF_{k,p,q}(n-k + 1) + F_{k,p,q}(n-k)$ for $n \geqslant k$, which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided. (English)
Keyword: Fibonacci number
Keyword: root
Keyword: characteristic polynomial
MSC: 11A63
MSC: 11B39
MSC: 11J86
idZBL: Zbl 07655762
idMR: MR4541096
DOI: 10.21136/CMJ.2022.0043-22
.
Date available: 2023-02-03T11:12:02Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151511
.
Reference: [1] Bednarz, N.: On $(k,p)$-Fibonacci numbers.Mathematics 9 (2021), Article ID 727, 13 pages. 10.3390/math9070727
Reference: [2] Fonseca, C. M. da: An identity between the determinant and the permanent of Hessenberg-type matrices.Czech. Math. J. 61 (2011), 917-921. Zbl 1249.15011, MR 2886247, 10.1007/s10587-011-0059-1
Reference: [3] Glasser, M. L.: The quadratic formula made hard: A less radical approach to solving equations.Available at https://arxiv.org/abs/math/9411224 (1994), 4 pages.
Reference: [4] Janjić, M.: Determinants and recurrence sequences.J. Integer Seq. 15 (2012), Article ID 12.3.5, 21 pages. Zbl 1286.11017, MR 2908736
Reference: [5] Kilic, E.: The generalized order-$k$ Fibonacci-Pell sequence by matrix methods.J. Comput. Appl. Math. 209 (2007), 133-145. Zbl 1162.11013, MR 2387120, 10.1016/j.cam.2006.10.071
Reference: [6] Merca, M.: A note on the determinant of a Toeplitz-Hessenberg matrix.Spec. Matrices 1 (2013), 10-16. Zbl 1291.15015, MR 3155395, 10.2478/spma-2013-0003
Reference: [7] Paja, N., Włoch, I.: Some interpretations of the $(k,p)$-Fibonacci numbers.Commentat. Math. Univ. Carol. 62 (2021), 297-307. Zbl 07442493, MR 4331284, 10.14712/1213-7243.2021.026
Reference: [8] Stakhov, A., Rozin, B.: The ``golden'' algebraic equations.Chaos Solitons Fractals 27 (2006), 1415-1421. Zbl 1148.11009, MR 2164865, 10.1016/j.chaos.2005.04.107
Reference: [9] Stakhov, A., Rozin, B.: Theory of Binet formulas for Fibonacci and Lucas $p$-numbers.Chaos Solitons Fractals 27 (2006), 1162-1177. Zbl 1178.11018, MR 2164849, 10.1016/j.chaos.2005.04.106
Reference: [10] Trojovský, P.: On the characteristic polynomial of the generalized $k$-distance Tribonacci sequences.Mathematics 8 (2020), Article ID 1387, 8 pages. MR 4197344, 10.3390/math8081387
Reference: [11] Trojovský, P.: On the characteristic polynomial of $(k,p)$-Fibonacci sequence.Adv. Difference Equ. 2021 (2021), Article ID 28, 9 pages. Zbl 1485.11038, MR 4197344, 10.1186/s13662-020-03186-8
Reference: [12] Verde-Star, L.: Polynomial sequences generated by infinite Hessenberg matrices.Spec. Matrices 5 (2017), 64-72. Zbl 1360.15034, MR 3602625, 10.1515/spma-2017-0002
Reference: [13] Włoch, I.: On generalized Pell numbers and their graph representations.Commentat. Math. 48 (2008), 169-175. Zbl 1175.05105, MR 2482763
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo