Title: | Coprimality of integers in Piatetski-Shapiro sequences (English) |
Author: | Pimsert, Watcharapon |
Author: | Srichan, Teerapat |
Author: | Tangsupphathawat, Pinthira |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 1 |
Year: | 2023 |
Pages: | 197-212 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We use the estimation of the number of integers $n$ such that $\lfloor n^c \rfloor $ belongs to an arithmetic progression to study the coprimality of integers in $\mathbb {N}^c=\{ \lfloor n^c \rfloor \}_{n\in \mathbb {N}}$, $c>1$, $c\notin \mathbb {N}$. (English) |
Keyword: | greatest common divisor |
Keyword: | natural density |
Keyword: | Piatetski-Shapiro sequence |
MSC: | 11A05 |
MSC: | 11K06 |
idZBL: | Zbl 07655763 |
idMR: | MR4541097 |
DOI: | 10.21136/CMJ.2022.0044-22 |
. | |
Date available: | 2023-02-03T11:12:39Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151512 |
. | |
Reference: | [1] Bergelson, V., Richter, F. K.: On the density of coprime tuples of the form $(n, \lfloor f_1(n) \rfloor, \dots ,\lfloor f_k(n) \rfloor)$, where $f_1, \dots , f_k$ are functions from a Hardy field.Number Theory: Diophantine Problems, Uniform Distribution and Applications Springer, Cham (2017), 109-135. Zbl 1414.11083, MR 3676397, 10.1007/978-3-319-55357-3_5 |
Reference: | [2] Cesàro, E.: Étude moyenne di plus grand commun diviseur de deux nombres.Ann. Mat. (2) 13 (1885), 235-250 French \99999JFM99999 17.0144.05. 10.1007/BF02420800 |
Reference: | [3] Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres.Ann. Mat. (2) 13 (1885), 291-294 French \99999JFM99999 17.0145.01. 10.1007/BF02420803 |
Reference: | [4] Cohen, E.: Arithmetical functions of a greatest common divisor. I.Proc. Am. Math. Soc. 11 (1960), 164-171. Zbl 0096.02906, MR 0111713, 10.1090/S0002-9939-1960-0111713-8 |
Reference: | [5] Delmer, F., Deshouillers, J.-M.: On the probability that $n$ and $[n^c]$ are coprime.Period. Math. Hung. 45 (2002), 15-20. Zbl 1026.11003, MR 1955189, 10.1023/A:1022337727769 |
Reference: | [6] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences.Hardy-Ramanujan J. 41 (2018), 127-132. Zbl 1448.11055, MR 3935505 |
Reference: | [7] Diaconis, P., Erdős, P.: On the distribution of the greatest common divisor.A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes - Monograph Series 45. Institute of Mathematical Statistics, Beachwood (2004), 56-61. Zbl 1268.11139, MR 2126886, 10.1214/lnms/1196285379 |
Reference: | [8] Dirichlet, G. L.: Über die Bestimmung der mittleren Werthe in der Zahlentheorie.Abh. König. Preuss. Akad. Wiss. (1849), 69-83 German. 10.1017/CBO9781139237345.007 |
Reference: | [9] Fernández, J. L., Fernández, P.: Asymptotic normality and greatest common divisors.Int. J. Number Theory 11 (2015), 89-126. Zbl 1322.11102, MR 3280945, 10.1142/S1793042115500062 |
Reference: | [10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Oxford University Press, Oxford (2008). Zbl 1159.11001, MR 2445243 |
Reference: | [11] Lambek, J., Moser, L.: On integers $n$ relatively prime to $f(n)$.Can. J. Math. 7 (1955), 155-158. Zbl 0064.27903, MR 0068563, 10.4153/CJM-1955-020-0 |
Reference: | [12] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$.Mat. Sb., N. Ser. 33 (1953), 559-566. Zbl 0053.02702, MR 0059302 |
. |
Fulltext not available (moving wall 24 months)