Previous |  Up |  Next

Article

Title: Möbius metric in sector domains (English)
Author: Rainio, Oona
Author: Vuorinen, Matti
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 213-236
Summary lang: English
.
Category: math
.
Summary: The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains. (English)
Keyword: hyperbolic geometry
Keyword: hyperbolic metric
Keyword: intrinsic geometry
Keyword: Möbius metric
Keyword: quasiregular mapping
Keyword: triangular ratio metric
MSC: 30C62
MSC: 51M10
idZBL: Zbl 07655764
idMR: MR4541098
DOI: 10.21136/CMJ.2022.0050-22
.
Date available: 2023-02-03T11:13:11Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151513
.
Reference: [1] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal maps.Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. Zbl 1374.30069, MR 3409699, 10.5186/aasfm.2015.4039
Reference: [2] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk.Mathematical Surveys and Monographs 184. AMS, Providence (2012). Zbl 1267.30003, MR 2933660, 10.1090/surv/184
Reference: [3] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric.J. Anal. Math. 36 (1979), 50-74. Zbl 0449.30012, MR 0581801, 10.1007/BF02798768
Reference: [4] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains.J. Anal. Math. 30 (1976), 172-199. Zbl 0349.30019, MR 0437753, 10.1007/BF02786713
Reference: [5] Hariri, P., Klén, R., Vuorinen, M.: Local convexity of metric balls.Monatsh. Math. 186 (2018), 281-298. Zbl 1395.51019, MR 3808654, 10.1007/s00605-017-1142-y
Reference: [6] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings.Springer Monographs in Mathematics. Springer, Cham (2020). Zbl 1450.30003, MR 4179585, 10.1007/978-3-030-32068-3
Reference: [7] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric.Rocky Mt. J. Math. 47 (2017), 1121-1148. Zbl 1376.30019, MR 3689948, 10.1216/RMJ-2017-47-4-1121
Reference: [8] Hästö, P.: A new weighted metric: The relative metric. I.J. Math. Anal. Appl. 274 (2002), 38-58. Zbl 1019.54011, MR 1936685, 10.1016/S0022-247X(02)00219-6
Reference: [9] Hästö, P., Ibragimov, Z., Minda, D., Ponnusamy, S., Swadesh, S.: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis.In the Tradition of Ahlfors-Bers. IV Contemporary Mathematics 432. AMS, Providence (2007), 63-74. Zbl 1147.30029, MR 2342807, 10.1090/conm/432
Reference: [10] Lindén, H.: Quasihyperbolic geodesics and uniformity in elementary domains.Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005), 50 pages. Zbl 1092.51003, MR 2183008
Reference: [11] Nasser, M. M. S., Rainio, O., Vuorinen, M.: Condenser capacity and hyperbolic perimeter.Comput. Math. Appl. 105 (2022), 54-74. Zbl 07447596, MR 4345260, 10.1016/j.camwa.2021.11.016
Reference: [12] Rainio, O.: Intrinsic quasi-metrics.Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 2873-2891. Zbl 1476.51019, MR 4296316, 10.1007/s40840-021-01089-9
Reference: [13] Rainio, O., Vuorinen, M.: Introducing a new intrinsic metric.Result. Math. 77 (2022), Article ID 71, 18 pages. Zbl 07490182, MR 4379104, 10.1007/s00025-021-01592-2
Reference: [14] Rainio, O., Vuorinen, M.: Triangular ratio metric under quasiconformal mappings in sector domains.To appear in Comput. Methods Funct. Theory (2022). MR 4584499, 10.1007/s40315-022-00447-3
Reference: [15] Seittenranta, P.: Möbius-invariant metrics.Math. Proc. Camb. Philos. Soc. 125 (1999), 511-533. Zbl 0917.30015, MR 1656825, 10.1017/S0305004198002904
Reference: [16] Väisälä, J.: Lectures on $n$-Dimensional Quasiconformal Mappings.Lecture Notes in Mathematics 229. Springer, Berlin (1971). Zbl 0221.30031, MR 0454009, 10.1007/BFb0061216
Reference: [17] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings.Lecture Notes in Mathematics 1319. Springer, Berlin (1988). Zbl 0646.30025, MR 0950174, 10.1007/BFb0077904
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo