Previous |  Up |  Next

Article

Title: A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs (English)
Author: Mao, Yaping
Author: Melekian, Christopher
Author: Cheng, Eddie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 237-244
Summary lang: English
.
Category: math
.
Summary: For a connected graph $G=(V,E)$ and a set $S \subseteq V(G)$ with at least two vertices, an $S$-Steiner tree is a subgraph $T = (V',E')$ of $G$ that is a tree with $S \subseteq V'$. If the degree of each vertex of $S$ in $T$ is equal to 1, then $T$ is called a pendant $S$-Steiner tree. Two $S$-Steiner trees are {\it internally disjoint} if they share no vertices other than $S$ and have no edges in common. For $S\subseteq V(G)$ and $|S|\geq 2$, the pendant tree-connectivity $\tau _G(S)$ is the maximum number of internally disjoint pendant $S$-Steiner trees in $G$, and for $k \geq 2$, the $k$-pendant tree-connectivity $\tau _k(G)$ is the minimum value of $\tau _G(S)$ over all sets $S$ of $k$ vertices. We derive a lower bound for $\tau _3(G\circ H)$, where $G$ and $H$ are connected graphs and $\circ $ denotes the lexicographic product. (English)
Keyword: connectivity
Keyword: Steiner tree
Keyword: internally disjoint Steiner tree
Keyword: packing
Keyword: pendant tree-connectivity, lexicographic product
MSC: 05C05
MSC: 05C40
MSC: 05C70
MSC: 05C76
idZBL: Zbl 07655765
idMR: MR4541099
DOI: 10.21136/CMJ.2022.0057-22
.
Date available: 2023-02-03T11:13:45Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151514
.
Reference: [1] Hager, M.: Pendant tree-connectivity.J. Comb. Theory, Ser. B 38 (1985), 179-189. Zbl 0566.05041, MR 0787327, 10.1016/0095-8956(85)90083-8
Reference: [2] Hind, H. R., Oellermann, O.: Menger-type results for three or more vertices.Congr. Numerantium 113 (1996), 179-204. Zbl 0974.05047, MR 1393709
Reference: [3] Li, X., Mao, Y.: The generalized 3-connectivity of lexicographic product graphs.Discrete Math. Theor. Comput. Sci. 16 (2014), 339-354. Zbl 1294.05105, MR 3223294
Reference: [4] Li, X., Mao, Y.: Generalized Connectivity of Graphs.SpringerBriefs in Mathematics. Springer, Cham (2016). Zbl 1346.05001, MR 3496995, 10.1007/978-3-319-33828-6
Reference: [5] West, D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River (1996). Zbl 0845.05001, MR 1367739
Reference: [6] Yang, C., Xu, J.-M.: Connectivity of lexicographic product and direct product of graphs.Ars Comb. 111 (2013), 3-12. Zbl 1313.05212, MR 3100156
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo