Previous |  Up |  Next

Article

Title: On the class of order almost L-weakly compact operators (English)
Author: El Fahri, Kamal
Author: Khabaoui, Hassan
Author: H'michane, Jawad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 4
Year: 2022
Pages: 459-471
Summary lang: English
.
Category: math
.
Summary: We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem. (English)
Keyword: order bounded weakly convergent sequence
Keyword: L-weakly compact set
Keyword: order almost L-weakly compact operator
Keyword: L-weakly compact operator
MSC: 46B42
MSC: 47B60
MSC: 47B65
idZBL: Zbl 07723831
idMR: MR4577041
DOI: 10.14712/1213-7243.2023.002
.
Date available: 2023-04-20T13:51:30Z
Last updated: 2023-10-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151646
.
Reference: [1] Aliprantis C. D., Burkinshaw O.: Positive Operators.Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133
Reference: [2] Aqzzouz B., Elbour A.: Some new results on the class of AM-compact operators.Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. MR 2670695, 10.1007/s12215-010-0020-4
Reference: [3] Aqzzouz B., Elbour A., H’michane J.: Some properties of the class of positive Dunford–Pettis operators.J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. MR 2510440, 10.1016/j.jmaa.2008.12.063
Reference: [4] Aqzzouz B., H'michane J.: The duality problem for the class of order weakly compact operators.Glasg. Math. J. 51 (2009), no. 1, 101–108. MR 2471680, 10.1017/S0017089508004576
Reference: [5] Bouras K., Lhaimer D., Moussa M.: On the class of almost L-weakly and almost M-weakly compact operators.Positivity 22 (2018), 1433–1443. MR 3863626, 10.1007/s11117-018-0586-1
Reference: [6] Dodds P. G., Fremlin D. H.: Compact operators on Banach lattices.Israel J. Math. 34 (1979), no. 4, 287–320. MR 0570888, 10.1007/BF02760610
Reference: [7] Elbour A., Afkir F., Sabiri M.: Some properties of almost L-weakly and almost M-weakly compact operators.Positivity 24 (2020), 141–149. MR 4052686, 10.1007/s11117-019-00671-7
Reference: [8] El Fahri K., Khabaoui H., H'michane J.: Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications.Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR 4412414
Reference: [9] El Fahri K., Oughajji F. Z.: On the class of almost order (L) sets and applications.Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR 4234309
Reference: [10] Lhaimer D., Bouras K., Moussa M.: On the class of order L-weakly and order M-weakly compact operators.Positivity 25 (2021), no. 4, 1569–1578. MR 4301150, 10.1007/s11117-021-00829-2
Reference: [11] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093
Reference: [12] Wnuk W.: Banach lattices with properties of the Schur type---a survey.Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR 1230964
Reference: [13] Wnuk W.: Remarks on J. R. Holub's paper concerning Dunford–Pettis operators.Math. Japon. 38 (1993), no. 6, 1077–1080. MR 1250331
Reference: [14] Zabeti O.: Unbounded absolute weak convergence in Banach lattices.Positivity 22 (2018), no. 2, 501–505. MR 3780811, 10.1007/s11117-017-0524-7
Reference: [15] Zabeti O.: Unbounded continuous operators and unbounded Banach–Saks property in Banach lattices.Positivity 25 (2021), no. 5, 1989–2001. MR 4338556, 10.1007/s11117-021-00858-x
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo