Previous |  Up |  Next

Article

Title: Some isomorphic properties in projective tensor products (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 4
Year: 2022
Pages: 473-485
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions implying that the projective tensor product of two Banach spaces $X$ and $Y$ has the $p$-sequentially Right and the $p$-$L$-limited properties, $1\le p<\infty$. (English)
Keyword: $L$-limited property
Keyword: $p$-(SR) property
Keyword: $p$-$L$-limited property
Keyword: sequentially Right property
MSC: 46B20
MSC: 46B25
MSC: 46B28
idZBL: Zbl 07729554
idMR: MR4577042
DOI: 10.14712/1213-7243.2023.008
.
Date available: 2023-04-20T13:54:01Z
Last updated: 2023-10-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151647
.
Reference: [1] Alikhani M.: Sequentially right-like properties on Banach spaces.Filomat 33 (2019), no. 14, 4461–4474. MR 4049162, 10.2298/FIL1914461A
Reference: [2] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), no. 1, 35–41. MR 0531148, 10.1007/BF01406706
Reference: [3] Bessaga C., Pełczyński A.: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–164. MR 0115069, 10.4064/sm-17-2-151-164
Reference: [4] Bombal F., Emmanuele G.: Remarks on completely continuous polynomials.Quaestiones Math. 20 (1997), no. 1, 85–93. MR 1454563, 10.1080/16073606.1997.9631856
Reference: [5] Bourgain J.: New Classes of $\mathcal{L}_p$-Spaces.Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR 0639014
Reference: [6] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [7] Carrión H., Galindo P., Laurenço M. L.: A stronger Dunford–Pettis property.Studia Math. 184 (2008), no. 3, 205–216. MR 2369139, 10.4064/sm184-3-1
Reference: [8] Castillo J. M. F., Sánchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
Reference: [9] Cembranos P.: $C(K,E)$ contains a complemented copy of $c_0$.Proc. Amer. Math Soc. 91 (1984), no. 4, 556–558. MR 0746089
Reference: [10] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X, Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015
Reference: [11] Diestel J.: A survey of results related to the Dunford–Pettis property.Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pages 15–60. MR 0621850
Reference: [12] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [13] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [14] Diestel J., Uhl J. J., Jr.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl 0521.46035, MR 0453964
Reference: [15] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge. Philos. Soc. 111 (1992), no. 2, 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [16] Fourie J. H., Zeekoei E. D.: $DP^*$-properties of order $p$ on Banach spaces.Quaest. Math. 37 (2014), no. 3, 349–358. MR 3285289, 10.2989/16073606.2013.779611
Reference: [17] Fourie J. H., Zeekoei E. D.: On weak-star-$p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [18] Ghenciu I.: Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products.Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR 3390279
Reference: [19] Ghenciu I.: A note on some isomorphic properties in projective tensor products.Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522
Reference: [20] Ghenciu I.: Dunford–Pettis like properties on tensor products.Quaest. Math. 41 (2018), no. 6, 811–828. MR 3857131, 10.2989/16073606.2017.1402383
Reference: [21] Ghenciu I.: Some classes of Banach spaces and complemented subspaces of operators.Adv. Oper. Theory 4 (2019), no. 2, 369–387. MR 3883141, 10.15352/aot.1802-1318
Reference: [22] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators.Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl 1167.46016, MR 2481977, 10.4064/ba56-3-7
Reference: [23] Ghenciu I., Lewis P.: Completely continuous operators.Colloq. Math. 126 (2012), no. 2, 231–256. Zbl 1256.46009, MR 2924252, 10.4064/cm126-2-7
Reference: [24] Kačena M.: On sequentially Right Banach spaces.Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388
Reference: [25] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [26] Pełczyński A., Semadeni Z.: Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806, 10.4064/sm-18-2-211-222
Reference: [27] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterization of weakly compact operators.J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR 2270063, 10.1016/j.jmaa.2006.02.066
Reference: [28] Rosenthal H. P.: Point-wise compact subsets of the first Baire class.Amer. J. Math. 99 (1977), no. 2, 362–377. MR 0438113, 10.2307/2373824
Reference: [29] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309
Reference: [30] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004
Reference: [31] Salimi M., Moshtaghioun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces.Hindawi Publishing Corporation, Abstr. Appl. Anal. (2012), Article ID 212957, 8 pages. MR 2910729
Reference: [32] Schlumprecht T.: Limited Sets in Banach Spaces.Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
Reference: [33] Wen Y., Chen J.: Characterizations of Banach spaces with relatively compact Dunford–Pettis sets.Adv. Math. (China) 45 (2016), no. 1, 122–132. MR 3483491
Reference: [34] Wojtaszczyk P.: Banach Spaces for Analysts.Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR 1144277
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo