Previous |  Up |  Next

Article

Title: On sets of discontinuities of functions continuous on all lines (English)
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 4
Year: 2022
Pages: 487-505
Summary lang: English
.
Category: math
.
Summary: Answering a question asked by K. C. Ciesielski and T. Glatzer in 2013, we construct a $C^1$-smooth function $f$ on $[0,1]$ and a closed set $M \subset {\rm graph} f$ nowhere dense in ${\rm graph} f$ such that there does not exist any linearly continuous function on ${\mathbb R}^2$ (i.e., function continuous on all lines) which is discontinuous at each point of $M$. We substantially use a recent full characterization of sets of discontinuity points of linearly continuous functions on ${\mathbb R}^n$ proved by T. Banakh and O. Maslyuchenko in 2020. As an easy consequence of our result, we prove that the necessary condition for such sets of discontinuities proved by S. G. Slobodnik in 1976 is not sufficient. We also prove an analogue of this Slobodnik's result in separable Banach spaces. (English)
Keyword: linear continuity
Keyword: discontinuity sets
Keyword: Banach space
MSC: 26B05
MSC: 46B99
idZBL: Zbl 07729555
idMR: MR4577043
DOI: 10.14712/1213-7243.2023.007
.
Date available: 2023-04-20T13:55:16Z
Last updated: 2023-10-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151648
.
Reference: [1] Banakh T., Maslyuchenko O.: Linearly continuous functions and $F_\sigma$-measurability.Eur. J. Math. 6 (2020), no. 1, 37–52. MR 4071455, 10.1007/s40879-019-00385-w
Reference: [2] Bruckner A. M.: Differentiation of Real Functions.CRM Monograph Series, 5, American Mathematical Society, Providence, 1994. MR 1274044
Reference: [3] Ciesielski K. Ch., Glatzer T.: Sets of discontinuities of linearly continuous functions.Real Anal. Exchange 38 (2012/13), no. 2, 377–389. MR 3261883
Reference: [4] Ciesielski K. Ch., Glatzer T.: Sets of discontinuities for functions continuous on flats.Real Anal. Exchange 39 (2013/14), no. 1, 117–138. MR 3261903
Reference: [5] Ciesielski K. C., Miller D.: A continuous tale on continuous and separately continuous functions.Real Anal. Exchange 41 (2016), no. 1, 19–54. MR 3511935
Reference: [6] Dugundji J.: Topology.Allyn and Bacon, Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [7] Kershner R.: The continuity of functions of many variables.Trans. Amer. Math. Soc. 53 (1943), 83–100. MR 0007522, 10.1090/S0002-9947-1943-0007522-5
Reference: [8] Kuratowski K.: Topology. Vol. I.Academic Press, New York, Państwowe Wydawnictwo Naukowe, Warszaw, 1966.
Reference: [9] Lebesgue H.: Sur les fonctions représentable analytiquement.J. Math. Pure Appl. (6) 1 (1905), 139–212 (French).
Reference: [10] Shnol' É. É.: Functions of two variables that are continuous along straight lines.Mat. Zametki 62 (1997), no. 2, 306–311 (Russian); translation in Math. Notes 62 (1997), no. 1–2, 255–259. MR 1619865
Reference: [11] Slobodnik S. G.: Expanding system of linearly closed sets.Mat. Zametki 19 (1976), no. 1, 67–84 (Russian); translation in Math. Notes 19 (1976), no. 1, 39–48. MR 0409742
Reference: [12] Young W. H., Young G. C.: Discontinuous functions continuous with respect to every straight line.Quart. J. Math. Oxford Series 41 (1910), 87–93.
Reference: [13] Zajíček L.: A remark on functions continuous on all lines.Comment. Math. Univ. Carolin. 60 (2019), no. 2, 211–218. MR 3982469
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo