Previous |  Up |  Next

Article

Title: On Szymański theorem on hereditary normality of $\beta\omega$ (English)
Author: Logunov, Sergei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 4
Year: 2022
Pages: 507-512
Summary lang: English
.
Category: math
.
Summary: We discuss the following result of A. Szymański in ``Retracts and non-normality points" (2012), Corollary 3.5.: If $F$ is a closed subspace of $\omega ^{*}$ and the $\pi$-weight of $F$ is countable, then every nonisolated point of $F$ is a non-normality point of $\omega ^{*}$. We obtain stronger results for all types of points, excluding the limits of countable discrete sets considered in ``Some non-normal subspaces of the Čech--Stone compactification of a discrete space'' (1980) by A. Błaszczyk and A. Szymański. Perhaps our proofs look ``more natural in this area''. (English)
Keyword: Čech--Stone compactification
Keyword: non-normality point
Keyword: butterfly-point
Keyword: countable $\pi$-weight
MSC: 54D15
MSC: 54D35
MSC: 54D40
MSC: 54D80
MSC: 54E35
MSC: 54G20
idZBL: Zbl 07729556
idMR: MR4577044
DOI: 10.14712/1213-7243.2023.011
.
Date available: 2023-04-20T13:56:06Z
Last updated: 2023-10-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151649
.
Reference: [1] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N
Reference: [2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Abstracta, 8th Winter School on Abstract Analysis, Praha, Czechoslovak Academy of Sciences, 1980, 35–38.
Reference: [3] Gryzlov A. A.: On the question of hereditary normality of the space $\beta \omega \setminus \omega$.Topology and Set Theory Udmurt. Gos. Univ. Izhevsk (1982), 61–64 (Russian). MR 0760274
Reference: [4] Logunov S.: On non-normality points and metrizable crowded spaces.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527. MR 2374131
Reference: [5] Rajagopalan M.: $\beta N-N-\{p\}$ is not normal.J. Indian Math. Soc. (N.S.) 36 (1972), 173–176. MR 0321012
Reference: [6] Shapirovkij B.: On embedding extremely disconnected spaces in compact Hausdorff spaces, $b$-points and weight of point-wise normal spaces.Dokl. Akad. Nauk SSSR 223 (1975), 1083–1086 (Russian). MR 0394609
Reference: [7] Szymański A.: Retracts and non-normality points.Topology Proc. 40 (2012), 195–201. MR 2832067
Reference: [8] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606. MR 0292035
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo