Title: | On the class number of the maximal real subfields of a family of cyclotomic fields (English) |
Author: | Ram, Mahesh Kumar |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 3 |
Year: | 2023 |
Pages: | 937-940 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | For any square-free positive integer $m\equiv {10}\pmod {16}$ with $m\geq 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity. (English) |
Keyword: | maximal real subfield of cyclotomic field |
Keyword: | real quadratic field |
Keyword: | class number |
MSC: | 11R11 |
MSC: | 11R18 |
MSC: | 11R29 |
idZBL: | Zbl 07729546 |
idMR: | MR4632866 |
DOI: | 10.21136/CMJ.2023.0364-22 |
. | |
Date available: | 2023-08-11T14:29:32Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151783 |
. | |
Reference: | [1] Ankeny, N. C., Chowla, S., Hasse, H.: On the class-number of the maximal real subfield of a cyclotomic field.J. Reine Angew. Math. 217 (1965), 217-220. Zbl 0128.03501, MR 172861, 10.1515/crll.1965.217.217 |
Reference: | [2] Gica, A.: Quadratic residues of certain types.Rocky Mt. J. Math. 36 (2006), 1867-1871. Zbl 1139.11004, MR 2305634, 10.1216/rmjm/1181069349 |
Reference: | [3] Hasse, H.: Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper.Elem. Math. 20 (1965), 49-59 German. Zbl 0128.03502, MR 191889 |
Reference: | [4] Hoque, A., Chakraborty, K.: Pell-type equations and class number of the maximal real subfield of a cyclotomic field.Ramanujan J. 46 (2018), 727-742. Zbl 1422.11065, MR 3826752, 10.1007/s11139-017-9963-9 |
Reference: | [5] Hoque, A., Saikia, H. K.: On the class-number of the maximal real subfield of a cyclotomic field.Quaest. Math. 39 (2016), 889-894. Zbl 1423.11190, MR 3573387, 10.2989/16073606.2016.1188864 |
Reference: | [6] Lang, S.-D.: Note on the class-number of the maximal real subfield of a cyclotomic field.J. Reine Angew. Math. 290 (1977), 70-72. Zbl 0346.12003, MR 447177, 10.1515/crll.1977.290.70 |
Reference: | [7] Osada, H.: Note on the class-number of the maximal real subfield of a cyclotomic field.Manuscr. Math. 58 (1987), 215-227. Zbl 0602.12002, MR 884993, 10.1007/BF01169091 |
Reference: | [8] Takeuchi, H.: On the class-number of the maximal real subfield of a cyclotomic field.Can. J. Math. 33 (1981), 55-58. Zbl 0482.12004, MR 608854, 10.4153/CJM-1981-006-8 |
Reference: | [9] Yamaguchi, I.: On the class-number of the maximal real subfield of a cyclotomic field.J. Reine Angew. Math. 272 (1975), 217-220. Zbl 0313.12003, MR 366874, 10.1515/crll.1975.272.217 |
. |
Fulltext not available (moving wall 24 months)