Previous |  Up |  Next

Article

Title: Fredholmness of pseudo-differential operators with nonregular symbols (English)
Author: Yoshitomi, Kazushi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 941-954
Summary lang: English
.
Category: math
.
Summary: We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma }$, $0<\sigma <1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020). (English)
Keyword: Fredholmness
Keyword: pseudo-differential operator
Keyword: nonregular symbol
MSC: 35S05
MSC: 47A53
MSC: 47G30
idZBL: Zbl 07729547
idMR: MR4632867
DOI: 10.21136/CMJ.2023.0387-22
.
Date available: 2023-08-11T14:30:02Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151784
.
Reference: [1] Abels, H.: Pseudodifferential and Singular Integral Operators: An Introduction With Applications.de Gruyter Graduate Lectures. Walter de Gruyter, Berlin (2012). Zbl 1235.35001, MR 2884718, 10.1515/9783110250312
Reference: [2] Abels, H., Pfeuffer, C.: Fredholm property of non-smooth pseudodifferential operators.Math. Nachr. 293 (2020), 822-846. Zbl 07206433, MR 4100541, 10.1002/mana.201800361
Reference: [3] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudo-Diffe-rential Operators.Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1994). Zbl 0601.35001, MR 1313500, 10.1007/978-3-540-49938-1
Reference: [4] Kohn, J. J., Nirenberg, L.: An algebra of pseudo-differential operators.Commun. Pure Appl. Math. 18 (1965), 269-305. Zbl 0171.35101, MR 0176362, 10.1002/cpa.3160180121
Reference: [5] Kumano-go, H.: Pseudo-Differential Operators.MIT Press, Cambridge (1982). Zbl 0489.35003, MR 0666870
Reference: [6] Nagase, M.: The $L^p$-boundedness of pseudo-differential operators with non-regular symbols.Commun. Partial Differ. Equations 2 (1977), 1045-1061. Zbl 0397.35071, MR 0470758, 10.1080/03605307708820054
Reference: [7] Taylor, M. E.: Pseudodifferential Operators and Nonlinear PDE.Progress in Mathematics 100. Brikhäuser, Boston (1991). Zbl 0746.35062, MR 1121019, 10.1007/978-1-4612-0431-2
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo