Previous |  Up |  Next

Article

Title: On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$ (English)
Author: Chen, Gongrui
Author: Wang, Wenxiao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 955-969
Summary lang: English
.
Category: math
.
Summary: Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022). (English)
Keyword: square-free
Keyword: Salié sum
Keyword: asymptotic formula
MSC: 11L05
MSC: 11L40
MSC: 11N25
idZBL: Zbl 07729548
idMR: MR4632868
DOI: 10.21136/CMJ.2023.0394-22
.
Date available: 2023-08-11T14:30:44Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151785
.
Reference: [1] Brandes, J.: Twins of the $s$-Free Numbers: Diploma Thesis.University of Stuttgart, Stuttgart (2009).
Reference: [2] Carlitz, L.: On a problem in additive arithmetic. II.Q. J. Math., Oxf. Ser. 3 (1932), 273-290. Zbl 0006.10401, 10.1093/qmath/os-3.1.273
Reference: [3] Chen, B.: On the consecutive square-free values of the polynomials $x_{1}^2 + \cdots + x_{k}^2 + 1$, $x_{1}^2 + \cdots + x_{k}^2 + 2$.(to appear) in Indian J. Pure Appl. Math. MR 1398080, 10.1007/s13226-022-00292-z
Reference: [4] Dimitrov, S.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2 + y^2 + 1$, $x^2 + y^2 + 2$ are square-free.Acta Arith. 194 (2020), 281-294. Zbl 1469.11263, MR 4096105, 10.4064/aa190118-25-7
Reference: [5] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$.Czech. Math. J. 71 (2021), 991-1009. Zbl 07442468, MR 4339105, 10.21136/CMJ.2021.0165-20
Reference: [6] Estermann, T.: Einige Sätze über quadratfreie Zahlen.Math. Ann. 105 (1931), 653-662 German. Zbl 0003.15001, MR 1512732, 10.1007/BF01455836
Reference: [7] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method.Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. Zbl 0105.03606, MR 0137677, 10.1112/plms/s3-12.1.425
Reference: [8] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers.Math. Ann. 266 (1984), 251-259. Zbl 0514.10038, MR 0730168, 10.1007/BF01475576
Reference: [9] Heath-Brown, D. R.: Square-free values of $n^2+1$.Acta Arith. 155 (2012), 1-13. Zbl 1312.11077, MR 2982423, 10.4064/aa155-1-1
Reference: [10] Iwaniec, H.: Almost-primes represented by quadratic polynomials.Invent. Math. 47 (1978), 171-188. Zbl 0389.10031, MR 0485740, 10.1007/bf01578070
Reference: [11] Iwaniec, H.: Topics in Classical Automorphic Forms.Graduate Studies in Mathematics 17. AMS, Providence (1997). Zbl 0905.11023, MR 1474964, 10.1090/gsm/017
Reference: [12] Jing, M., Liu, H.: Consecutive square-free numbers and square-free primitive roots.Int. J. Number Theory 18 (2022), 205-226. Zbl 1489.11005, MR 4369801, 10.1142/S1793042122500154
Reference: [13] Mirsky, L.: Note on an asymptotic formula connected with $r$-free integers.Q. J. Math., Oxf. Ser. 18 (1947), 178-182. Zbl 0029.10905, MR 0021566, 10.1093/qmath/os-18.1.178
Reference: [14] Mirsky, L.: On the frequency of pairs of square-free numbers with a given difference.Bull. Am. Math. Soc. 55 (1949), 936-939. Zbl 0035.31301, MR 0031507, 10.1090/S0002-9904-1949-09313-8
Reference: [15] Nathanson, M. B.: Addictive Number Theory: The Classical Bases.Graduate Texts in Mathematics 164. Springer, New York (1996). Zbl 0859.11002, MR 1395371, 10.1007/978-1-4757-3845-2
Reference: [16] Reuss, T.: The Determinant Method and Applications: Ph.D. Thesis.University of Oxford, Oxford (2015).
Reference: [17] Tolev, D. I.: On the number of pairs of positive integers $x, y \le H$ such that $x^2 + y^2 + 1$ is square-free.Monatsh. Math. 165 (2012), 557-567. Zbl 1297.11118, MR 2891268, 10.1007/s00605-010-0246-4
Reference: [18] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+ y^2+ z^2+k$.J. Number Theory 236 (2022), 308-322. Zbl 1490.11096, MR 4395352, 10.1016/j.jnt.2021.07.022
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo