Previous |  Up |  Next

Article

Title: Tensor products of higher almost split sequences in subcategories (English)
Author: Lu, Xiaojian
Author: Luo, Deren
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1151-1174
Summary lang: English
.
Category: math
.
Summary: We introduce the algebras satisfying the $(\mathcal B,n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal B,n)$, $(\mathcal E,m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal B\otimes \mathcal E)^{(i_0, j_0)}$ of $\mod (\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal B\otimes \mathcal E)^{(i_0, j_0)},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019). (English)
Keyword: $n$-representation finite algebra
Keyword: higher almost split sequence
Keyword: tensor product
Keyword: mapping cone
MSC: 16D90
MSC: 16G10
MSC: 16G70
DOI: 10.21136/CMJ.2023.0432-22
.
Date available: 2023-11-23T12:24:10Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151952
.
Reference: [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences.Commun. Algebra 3 (1975), 239-294. Zbl 0331.16027, MR 0379599, 10.1080/00927877508822046
Reference: [3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences.Commun. Algebra 5 (1977), 443-518. Zbl 0396.16007, MR 0439881, 10.1080/00927877708822180
Reference: [4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [5] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). Zbl 0075.24305, MR 0077480
Reference: [6] Darpö, E., Iyama, O.: $d$-representation-finite self-injective algebras.Adv. Math. 362 (2020), Article ID 106932, 50 pages. Zbl 1481.16013, MR 4052555, 10.1016/j.aim.2019.106932
Reference: [7] Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra.Springer Monographs in Mathematics. Springer, Berlin (2003). Zbl 1006.18001, MR 1950475, 10.1007/978-3-662-03220-6
Reference: [8] Guo, J. Y.: On $n$-translation algebras.J. Algebra 453 (2016), 400-428. Zbl 1376.16015, MR 3465360, 10.1016/j.jalgebra.2015.08.006
Reference: [9] Guo, J. Y., Lu, X., Luo, D.: $\Bbb Z Q$ type constructions in higher representation theory.Available at https://arxiv.org/abs/1908.06546v3 (2022), 26 pages.
Reference: [10] Herschend, M., Iyama, O.: $n$-representation-finite algebras and twisted fractionally Calabi-Yau algebras.Bull. Lond. Math. Soc. 43 (2011), 449-466. Zbl 1275.16012, MR 2820136, 10.1112/blms/bdq101
Reference: [11] Herschend, M., Iyama, O., Oppermann, S.: $n$-representation infinite algebras.Adv. Math. 252 (2014), 292-342. Zbl 1339.16020, MR 3144232, 10.1016/j.aim.2013.09.023
Reference: [12] Iyama, O.: Auslander correspondence.Adv. Math. 210 (2007), 51-82. Zbl 1115.16006, MR 2298820, 10.1016/j.aim.2006.06.003
Reference: [13] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories.Adv. Math. 210 (2007), 22-50. Zbl 1115.16005, MR 2298819, 10.1016/j.aim.2006.06.002
Reference: [14] Iyama, O.: Auslander-Reiten theory revisited.Trends in Representation Theory of Algebras and Related Topics EMS Series of Congress Reports. EMS, Zürich (2008), 349-397. Zbl 1206.16011, MR 2484730, 10.4171/062-1/8
Reference: [15] Iyama, O.: Cluster tilting for higher Auslander algebras.Adv. Math. 226 (2011), 1-61. Zbl 1233.16014, MR 2735750, 10.1016/j.aim.2010.03.004
Reference: [16] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting.Trans. Am. Math. Soc. 363 (2011), 6575-6614. Zbl 1264.16015, MR 2833569, 10.1090/S0002-9947-2011-05312-2
Reference: [17] Lawrence, J.: When is the tensor product of algebras local? II..Proc. Am. Math. Soc. 58 (1976), 22-24. Zbl 0336.16008, MR 0409551, 10.1090/S0002-9939-1976-0409551-3
Reference: [18] Pasquali, A.: Tensor products of higher almost split sequences.J. Pure Appl. Algebra 221 (2017), 645-665. Zbl 1397.16012, MR 3556702, 10.1016/j.jpaa.2016.07.010
Reference: [19] Pasquali, A.: Tensor products of $n$-complete algebras.J. Pure Appl. Algebra 223 (2019), 3537-3553 \99999DOI99999 10.1016/j.jpaa.2018.11.016 . Zbl 1411.16018, MR 3926226, 10.1016/j.jpaa.2018.11.016
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo