Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$n$-representation finite algebra; higher almost split sequence; tensor product; mapping cone
Summary:
We introduce the algebras satisfying the $(\mathcal B,n)$ condition. If $\Lambda $, $\Gamma $ are algebras satisfying the $(\mathcal B,n)$, $(\mathcal E,m)$ condition, respectively, we give a construction of $(m+n)$-almost split sequences in some subcategories $(\mathcal B\otimes \mathcal E)^{(i_0, j_0)}$ of $\mod (\Lambda \otimes \Gamma )$ by tensor products and mapping cones. Moreover, we prove that the tensor product algebra $\Lambda \otimes \Gamma $ satisfies the $((\mathcal B\otimes \mathcal E)^{(i_0, j_0)},n+m)$ condition for some integers $i_0$, $j_0$; this construction unifies and extends the work of A. Pasquali (2017), (2019).
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences. Commun. Algebra 3 (1975), 239-294. DOI 10.1080/00927877508822046 | MR 0379599 | Zbl 0331.16027
[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. DOI 10.1080/00927877708822180 | MR 0439881 | Zbl 0396.16007
[4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[5] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). MR 0077480 | Zbl 0075.24305
[6] Darpö, E., Iyama, O.: $d$-representation-finite self-injective algebras. Adv. Math. 362 (2020), Article ID 106932, 50 pages. DOI 10.1016/j.aim.2019.106932 | MR 4052555 | Zbl 1481.16013
[7] Gelfand, S. I., Manin, Y. I.: Methods of Homological Algebra. Springer Monographs in Mathematics. Springer, Berlin (2003). DOI 10.1007/978-3-662-03220-6 | MR 1950475 | Zbl 1006.18001
[8] Guo, J. Y.: On $n$-translation algebras. J. Algebra 453 (2016), 400-428. DOI 10.1016/j.jalgebra.2015.08.006 | MR 3465360 | Zbl 1376.16015
[9] Guo, J. Y., Lu, X., Luo, D.: $\Bbb Z Q$ type constructions in higher representation theory. Available at https://arxiv.org/abs/1908.06546v3 (2022), 26 pages.
[10] Herschend, M., Iyama, O.: $n$-representation-finite algebras and twisted fractionally Calabi-Yau algebras. Bull. Lond. Math. Soc. 43 (2011), 449-466. DOI 10.1112/blms/bdq101 | MR 2820136 | Zbl 1275.16012
[11] Herschend, M., Iyama, O., Oppermann, S.: $n$-representation infinite algebras. Adv. Math. 252 (2014), 292-342. DOI 10.1016/j.aim.2013.09.023 | MR 3144232 | Zbl 1339.16020
[12] Iyama, O.: Auslander correspondence. Adv. Math. 210 (2007), 51-82. DOI 10.1016/j.aim.2006.06.003 | MR 2298820 | Zbl 1115.16006
[13] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 22-50. DOI 10.1016/j.aim.2006.06.002 | MR 2298819 | Zbl 1115.16005
[14] Iyama, O.: Auslander-Reiten theory revisited. Trends in Representation Theory of Algebras and Related Topics EMS Series of Congress Reports. EMS, Zürich (2008), 349-397. DOI 10.4171/062-1/8 | MR 2484730 | Zbl 1206.16011
[15] Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226 (2011), 1-61. DOI 10.1016/j.aim.2010.03.004 | MR 2735750 | Zbl 1233.16014
[16] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. DOI 10.1090/S0002-9947-2011-05312-2 | MR 2833569 | Zbl 1264.16015
[17] Lawrence, J.: When is the tensor product of algebras local? II. Proc. Am. Math. Soc. 58 (1976), 22-24. DOI 10.1090/S0002-9939-1976-0409551-3 | MR 0409551 | Zbl 0336.16008
[18] Pasquali, A.: Tensor products of higher almost split sequences. J. Pure Appl. Algebra 221 (2017), 645-665. DOI 10.1016/j.jpaa.2016.07.010 | MR 3556702 | Zbl 1397.16012
[19] Pasquali, A.: Tensor products of $n$-complete algebras. J. Pure Appl. Algebra 223 (2019), 3537-3553 \99999DOI99999 10.1016/j.jpaa.2018.11.016 . DOI 10.1016/j.jpaa.2018.11.016 | MR 3926226 | Zbl 1411.16018
Partner of
EuDML logo