Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
repeated integral; Cauchy formula for repeated integration; quadrature; cubature; numerical differentiation
Summary:
Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations.
References:
[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U.S. Department of Commerce, Washington (1964). MR 0167642 | Zbl 0171.38503
[2] Bauchau, O. A., Craig, J. I.: Euler-Bernoulli beam theory. Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. DOI 10.1007/978-90-481-2516-6_5
[3] Burden, R. L., Faires, J. D.: Numerical Analysis. PWS Publishing Company, Boston (1993). Zbl 0788.65001
[4] Folland, G. B.: Advanced Calculus. Prentice Hall, Hoboken (2001).
[5] Holoborodko, P.: Stable Newton-Cotes Formulas. Available at \brokenlink{ http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/{stable-newton-cotes-formulas/}}
[6] Janečka, A., Průša, V., Rajagopal, K. R.: Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range. Arch. Mech. 68 (2016), 3-25. MR 3497874 | Zbl 1338.74073
[7] Selvam, V. K. M., Bindhu, K. R.: Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note. J. Struct. Eng. 41 (2014), 420-431.
[8] Tvrdá, K.: Solution of a high bridge pillar under wind effects taking into account the real properties of reinforced concrete. MATEC Web Conf. 313 (2020), 6 pages. DOI 10.1051/matecconf/202031300008
[9] Tvrdá, K., Minárová, M.: Computation of definite integral over repeated integral. Tatra Mt. Math. Publ. 72 (2018), 141-154. DOI 10.2478/tmmp-2018-0026 | MR 3939444 | Zbl 07031665
Partner of
EuDML logo