Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Ferrers matrix; linear preserver; Boolean semiring
Summary:
Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case.
References:
[1] Beasley, L. B.: $(0,1)$-matrices, discrepancy and preservers. Czech. Math. J. 69 (2019), 1123-1131. DOI 10.21136/CMJ.2019.0092-18 | MR 4039626 | Zbl 07144881
[2] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science 5. Springer, Berlin (1986). DOI 10.1007/978-3-642-69959-7 | MR 0817983 | Zbl 0582.68002
[3] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858. DOI 10.1007/s10587-016-0296-4 | MR 3556871 | Zbl 1413.15051
[4] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Strong linear preservers of dense matrices. Bull. Iran. Math. Soc. 44 (2018), 969-976. DOI 10.1007/s41980-018-0063-4 | MR 3846382 | Zbl 1407.15003
[5] Sirasuntorn, N., Sombatboriboon, S., Udomsub, N.: Inversion of matrices over Boolean semirings. Thai J. Math. 7 (2009), 105-113. MR 2540688 | Zbl 1201.15002
Partner of
EuDML logo