Previous |  Up |  Next

Article

Title: Linear preserver of $n\times 1$ Ferrers vectors (English)
Author: Fazlpar, Leila
Author: Armandnejad, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1189-1200
Summary lang: English
.
Category: math
.
Summary: Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb {Z}_2$. Also, we have achieved the number of these linear maps in each case. (English)
Keyword: Ferrers matrix
Keyword: linear preserver
Keyword: Boolean semiring
MSC: 05B20
MSC: 15A04
DOI: 10.21136/CMJ.2023.0440-22
.
Date available: 2023-11-23T12:25:29Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151954
.
Reference: [1] Beasley, L. B.: $(0,1)$-matrices, discrepancy and preservers.Czech. Math. J. 69 (2019), 1123-1131. Zbl 07144881, MR 4039626, 10.21136/CMJ.2019.0092-18
Reference: [2] Kuich, W., Salomaa, A.: Semirings, Automata, Languages.EATCS Monographs on Theoretical Computer Science 5. Springer, Berlin (1986). Zbl 0582.68002, MR 0817983, 10.1007/978-3-642-69959-7
Reference: [3] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices.Czech. Math. J. 66 (2016), 847-858. Zbl 1413.15051, MR 3556871, 10.1007/s10587-016-0296-4
Reference: [4] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Strong linear preservers of dense matrices.Bull. Iran. Math. Soc. 44 (2018), 969-976. Zbl 1407.15003, MR 3846382, 10.1007/s41980-018-0063-4
Reference: [5] Sirasuntorn, N., Sombatboriboon, S., Udomsub, N.: Inversion of matrices over Boolean semirings.Thai J. Math. 7 (2009), 105-113. Zbl 1201.15002, MR 2540688
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo