Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
pointed Hopf algebra; quantum double; rank one
Summary:
We construct a class of quantum doubles $D(H_{D_n})$ of pointed Hopf algebras of rank one $H_{\mathcal {D}}$. We describe the algebra structures of $D(H_{D_n})$ by generators with relations. Moreover, we give the comultiplication $\Delta _{D}$, counit $\varepsilon _D$ and the antipode $S_{D}$, respectively.
References:
[1] Chen, H.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version. Commun. Algebra 27 (1999), 5011-5032. DOI 10.1080/00927879908826745 | MR 1709261 | Zbl 0942.16038
[2] Chen, H.: Skew pairing, cocycle deformations and double crossproducts. Acta Math. Sin., Engl. Ser. 15 (1999), 225-234. DOI 10.1007/BF02650666 | MR 1714075 | Zbl 0933.16038
[3] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys., B, Proc. Suppl. 18 (1990), 60-72. DOI 10.1016/0920-5632(91)90123-V | MR 1128130 | Zbl 0957.81670
[4] Doi, Y.: Braided bialgebras and quadratic bialgebras. Commun. Algebra 21 (1993), 1731-1749. DOI 10.1080/00927879308824649 | MR 1213985 | Zbl 0779.16015
[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[6] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${sl}_2$. J. Algebra 330 (2011), 103-129. DOI 10.1016/j.jalgebra.2011.01.010 | MR 2774620 | Zbl 1273.17019
[7] Krop, L., Radford, D. E.: Finite-dimensional Hopf algebras of rank one in characteristic zero. J. Algebra 302 (2006), 214-230. DOI 10.1016/j.jalgebra.2006.03.031 | MR 2236601 | Zbl 1126.16028
[8] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3 (1990), 257-296. DOI 10.2307/1990988 | MR 1013053 | Zbl 0695.16006
[9] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics. 82. AMS, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[10] Panov, A. N.: Ore extensions of Hopf algebras. Math. Notes 74 (2003), 401-410. DOI 10.1023/A:1026115004357 | MR 2022506 | Zbl 1071.16035
[11] Scherotzke, S.: Classification of pointed rank one Hopf algebras. J. Algebra 319 (2008), 2889-2912. DOI 10.1016/j.jalgebra.2008.01.028 | MR 2397414 | Zbl 1149.16033
[12] Suter, R.: Modules over $U_q({sl_2})$. Commun. Math. Phys. 163 (1994), 359-393. DOI 10.1007/BF02102012 | MR 1284788 | Zbl 0851.17015
[13] Xiao, J.: Finite dimensional representations of $U_t(sl_(2))$ at roots of unity. Can. J. Math. 49 (1997), 772-787. DOI 10.4153/CJM-1997-038-4 | MR 1471056 | Zbl 0901.17009
Partner of
EuDML logo