Previous |  Up |  Next

Article

Title: Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian (English)
Author: Wang, Zhiyong
Author: Qian, Zhengya
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 2
Year: 2024
Pages: 185-208
Summary lang: English
.
Category: math
.
Summary: We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$. (English)
Keyword: auxiliary functions
Keyword: $p(t)$-Laplacian systems
Keyword: periodic solution
Keyword: (C) condition
Keyword: generalized mountain pass theorem
MSC: 34C25
MSC: 35A15
DOI: 10.21136/MB.2023.0096-22
.
Date available: 2024-07-10T15:03:02Z
Last updated: 2024-07-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152467
.
Reference: [1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some problems with "strong" resonance at infinity.Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. Zbl 0522.58012, MR 0713209, 10.1016/0362-546X(83)90115-3
Reference: [2] Cerami, G.: An existence criterion for the critical points on unbounded manifolds.Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. Zbl 0436.58006, MR 0581298
Reference: [3] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [4] Fan, X.-L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems.J. Math. Anal. Appl. 282 (2003), 453-464. Zbl 1033.34023, MR 1989103, 10.1016/S0022-247X(02)00376-1
Reference: [5] Faraci, F., Livrea, R.: Infinitely many periodic solutions for a second-order nonautonomous system.Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 417-429. Zbl 1055.34082, MR 1978419, 10.1016/S0362-546X(03)00099-3
Reference: [6] Fei, G.: On periodic solutions of superquadratic Hamiltonian systems.Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages. Zbl 0999.37039, MR 1884977
Reference: [7] Jiang, Q., Tang, C.-L.: Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems.J. Math. Anal. Appl. 328 (2007), 380-389. Zbl 1118.34038, MR 2285556, 10.1016/j.jmaa.2006.05.064
Reference: [8] Li, C., Ou, Z.-Q., Tang, C.-L.: Three periodic solutions for $p$-Hamiltonian systems.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1596-1606. Zbl 1218.37080, MR 2764361, 10.1016/j.na.2010.10.030
Reference: [9] Lian, H., Wang, D., Bai, Z., Agarwal, R. P.: Periodic and subharmonic solutions for a class of second-order $p$-Laplacian Hamiltonian systems.Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages. Zbl 1320.34065, MR 3294474, 10.1186/s13661-014-0260-x
Reference: [10] Liu, C., Zhong, Y.: Infinitely many periodic solutions for ordinary $p(t)$-Laplacian differential systems.Electron Res. Arch. 30 (2022), 1653-1667. MR 4401210, 10.3934/era.2022083
Reference: [11] Ma, S., Zhang, Y.: Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems.J. Math. Anal. Appl. 351 (2009), 469-479. Zbl 1153.37009, MR 2472958, 10.1016/j.jmaa.2008.10.027
Reference: [12] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Applied Mathematical Sciences 74. Springer, New York (1989). Zbl 0676.58017, MR 0982267, 10.1007/978-1-4757-2061-7
Reference: [13] Ou, Z.-Q., Tang, C.-L.: Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems.Nonlinear Anal., Theory Methods Appl., Ser. A 58 (2004), 245-258. Zbl 1063.34033, MR 2073524, 10.1016/j.na.2004.03.029
Reference: [14] Pipan, J., Schechter, M.: Non-autonomous second order Hamiltonian systems.J. Differ. Equations 257 (2014), 351-373. Zbl 1331.37085, MR 3200374, 10.1016/j.jde.2014.03.016
Reference: [15] Rabinowitz, P.: On subharmonic solutions of Hamiltonian systems.Commun. Pure Appl. Math. 33 (1980), 609-633. Zbl 0425.34024, MR 0586414, 10.1002/cpa.3160330504
Reference: [16] Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.Regional Conference Series in Mathematics 65. AMS, Providence (1986). Zbl 0609.58002, MR 0845785, 10.1090/cbms/065
Reference: [17] Schechter, M.: Periodic non-autonomous second-order dynamical systems.J. Differ. Equations 223 (2006), 290-302. Zbl 1099.34042, MR 2214936, 10.1016/j.jde.2005.02.022
Reference: [18] Tang, C.-L., Wu, X.-P.: Periodic solutions for a class of new superquadratic second order Hamiltonian systems.Appl. Math. Lett. 34 (2014), 65-71. Zbl 1314.34090, MR 3212230, 10.1016/j.aml.2014.04.001
Reference: [19] Tang, X. H., Jiang, J.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems.Comput. Math. Appl. 59 (2010), 3646-3655. Zbl 1206.34059, MR 2651840, 10.1016/j.camwa.2010.03.039
Reference: [20] Tao, Z.-L., Tang, C.-L.: Periodic and subharmonic solutions of second-order Hamiltonian systems.J. Math. Anal. Appl. 293 (2004), 435-445. Zbl 1042.37047, MR 2053889, 10.1016/j.jmaa.2003.11.007
Reference: [21] Tian, Y., Ge, W.: Periodic solutions of non-autonomous second-order systems with a $p$-Laplacian.Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 192-203. Zbl 1116.34034, MR 2271646, 10.1016/j.na.2005.11.020
Reference: [22] Wang, X.-J., Yuan, R.: Existence of periodic solutions for $p(t)$-Laplacian systems.Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 866-880. Zbl 1171.34030, MR 2468426, 10.1016/j.na.2008.01.017
Reference: [23] Wang, Z., Zhang, J.: Existence of periodic solutions for a class of damped vibration problems.C. R., Math., Acad. Sci. Paris 356 (2018), 597-612. Zbl 1401.34052, MR 3806888, 10.1016/j.crma.2018.04.014
Reference: [24] Wang, Z., Zhang, J.: New existence results on periodic solutions of non-autonomous second order Hamiltonian systems.Appl. Math. Lett. 79 (2018), 43-50. Zbl 1461.37067, MR 3748609, 10.1016/j.aml.2017.11.016
Reference: [25] Xu, B., Tang, C.-L.: Some existence results on periodic solutions of ordinary $p$-Laplacian systems.J. Math. Anal. Appl. 333 (2007), 1228-1236. Zbl 1154.34331, MR 2331727, 10.1016/j.jmaa.2006.11.051
Reference: [26] Zhang, L., Tang, X. H., Chen, J.: Infinitely many periodic solutions for some second-order differential systems with $p(t)$-Laplacian.Bound. Value Probl. 2011 (2011), Article ID 33, 15 pages. Zbl 1275.34060, MR 2851529, 10.1186/1687-2770-2011-33
Reference: [27] Zhang, Q., Tang, X. H.: On the existence of infinitely many periodic solutions for second-order ordinary $p$-Laplacian systems.Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 121-136. Zbl 1246.34042, MR 2952800, 10.36045/bbms/1331153413
Reference: [28] Zhang, S.: Periodic solutions for a class of second order Hamiltonian systems with $p(t)$-Laplacian.Bound. Value Probl. 2016 (2016), Article ID 211, 20 pages. Zbl 1357.34080, MR 3575775, 10.1186/s13661-016-0720-6
Reference: [29] Zhang, X., Tang, X.: Existence of subharmonic solutions for non-quadratic second-order Hamiltonian systems.Bound. Value Probl. 2013 (2013), Article ID 139, 25 pages. Zbl 1297.34058, MR 3072825, 10.1186/1687-2770-2013-139
Reference: [30] Zhang, Y., Ma, S.: Some existence results on periodic and subharmonic solutions of ordinary $p$-Laplacian systems.Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 251-260. Zbl 1181.34054, MR 2505673, 10.3934/dcdsb.2009.12.251
Reference: [31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958
Reference: [32] Zou, W.: Multiple solutions for second-order Hamiltonian systems via computation of the critical groups.Nonlinear Anal., Theory Methods Appl., Ser. A 44 (2001), 975-989. Zbl 0997.37039, MR 1828377, 10.1016/S0362-546X(99)00324-7
.

Files

Files Size Format View
MathBohem_149-2024-2_3.pdf 340.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo