Previous |  Up |  Next

Article

Title: Nonlinear fourth order problems with asymptotically linear nonlinearities (English)
Author: Amor Ben Ali, Abir
Author: Dammak, Makkia
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 2
Year: 2024
Pages: 209-223
Summary lang: English
.
Category: math
.
Summary: We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical. (English)
Keyword: asymptotically linear
Keyword: mountain pass theorem
Keyword: biharmonic equation
Keyword: Cerami sequence
MSC: 35A15
MSC: 35J35
MSC: 35J60
MSC: 35J91
DOI: 10.21136/MB.2023.0008-22
.
Date available: 2024-07-10T15:03:55Z
Last updated: 2024-07-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152468
.
Reference: [1] Abid, I., Dammak, M., Douchich, I.: Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations.Nonlinear Funct. Anal. Appl. 21 (2016), 15-31. Zbl 1353.35130
Reference: [2] Abid, I., Jleli, M., Trabelsi, N.: Weak solutions of quasilinear biharmonic problems with positive, increasing and convex nonlinearities.Anal. Appl., Singap. 6 (2008), 213-227. Zbl 1160.35470, MR 2429357, 10.1142/s0219530508001134
Reference: [3] Alnaser, L. A., Dammak, M.: Biharmonic problem with indefinite asymptotically linear nonlinearity.Int. J. Math. Comput. Sci. 16 (2021), 1355-1370. Zbl 1473.35176, MR 4294409
Reference: [4] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical points theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7
Reference: [5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [6] Cerami, G.: An existence criterion for the critical points on unbounded manifolds.Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. Zbl 0436.58006, MR 0581298
Reference: [7] Chen, S., Santos, C. A., Yang, M., Zhou, J.: Bifurcation analysis for a modified quasilinear equation with negative exponent.Adv. Nonlinear Anal. 11 (2022), 684-701. Zbl 1486.35034, MR 4344369, 10.1515/anona-2021-0215
Reference: [8] Costa, D. G., Magalhães, C. A.: Variational elliptic problems which are nonquadratic at infinity.Nonlinear Anal., Theory Methods Appl. 23 (1994), 1401-1412. Zbl 0820.35059, MR 1306679, 10.1016/0362-546x(94)90135-x
Reference: [9] Costa, D. G., Miyagaki, O. H.: Nontrivial solutions for perturbations of the $p$-Laplacian on unbounded domains.J. Math. Anal. Appl. 193 (1995), 737-755. Zbl 0856.35040, MR 1341038, 10.1006/jmaa.1995.1264
Reference: [10] D'Ambrosio, L., Mitidieri, E.: Entire solutions of certain fourth order elliptic problems and related inequalities.Adv. Nonlinear Anal. 11 (2022), 785-829. Zbl 1485.35016, MR 4379602, 10.1515/anona-2021-0217
Reference: [11] Dammak, M., Jaidane, R., Jerbi, C.: Positive solutions for an asymptotically linear biharmonic problems.Nonlinear Funct. Anal. Appl. 22 (2017), 59-78. Zbl 1368.35053
Reference: [12] El-Abed, A., Ali, A. A. B., Dammak, M.: Schrödinger equation with asymptotically linear nonlinearities.Filomat 36 (2022), 629-639. MR 4394295, 10.2298/FIL2202629E
Reference: [13] Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\Bbb{R}^N$.Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 787-809. Zbl 0935.35044, MR 1718530, 10.1017/s0308210500013147
Reference: [14] Lian, W., Rădulescu, V. D., Xu, R., Yang, Y., Zhao, N.: Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations.Adv. Calc. Var. 14 (2021), 589-611. Zbl 1476.35048, MR 4319045, 10.1515/acv-2019-0039
Reference: [15] Liu, Y., Wang, Z.: Biharmonic equations with asymptotically linear nonlinearities.Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 549-560. Zbl 1150.35037, MR 2339395, 10.1016/s0252-9602(07)60055-1
Reference: [16] Martel, Y.: Uniqueness of weak extremal solutions of nonlinear elliptic problems.Houston J. Math. 23 (1997), 161-168. Zbl 0884.35037, MR 1688823
Reference: [17] Mironescu, P., Rădulescu, V. D.: A bifurcation problem associated to a convex, asymtotically linear function.C. R. Acad. Sci., Paris, Sér. I 316 (1993), 667-672. Zbl 0799.35025, MR 1214413
Reference: [18] Mironescu, P., Rădulescu, V. D.: The study of a bifurcation problem associated to an asymptotically linear function.Nonlinear Anal., Theory Methods Appl. 26 (1996), 857-875. Zbl 0842.35008, MR 1362758, 10.1016/0362-546x(94)00327-e
Reference: [19] Papageorgiou, N. S., Rădulescu, V. D., Repovš, D. D.: Existence and multiplicity of solutions for double-phase Robin problems.Bull. Lond. Math. Soc. 52 (2020), 546-560. Zbl 1447.35131, MR 4171387, 10.1112/blms.12347
Reference: [20] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.Regional Conference Series in Mathematics 65. AMS, Providence (1986). Zbl 0609.58002, MR 0845785, 10.1090/cbms/065
Reference: [21] Sâanouni, S., Trabelsi, N.: A bifurcation problem associated to an asymptotically linear function.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1731-7146. Zbl 1374.35051, MR 3548320, 10.1016/s0252-9602(16)30102-3
Reference: [22] Sâanouni, S., Trabelsi, N.: Bifurcation for elliptic forth-order problems with quasilinear source term.Electronic J. Differ. Equ. 92 (2016), Article ID 92, 16 pages. Zbl 1342.35036, MR 3489976
Reference: [23] Schechter, M.: Superlinear elliptic boundary value problems.Manuscr. Math. 86 (1995), 253-265. Zbl 0839.35048, MR 1323791, 10.1007/bf02567993
Reference: [24] Stuart, C. A., Zhou, H. S.: A variational problem related to self-trapping of an electromagnetic field.Math. Methods Appl. Sci. 19 (1996), 1397-1407. Zbl 0862.35123, MR 1414401, 10.1002/(sici)1099-1476(19961125)19:17<1397::aid-mma833>3.0.co;2-b
Reference: [25] Stuart, C. A., Zhou, H. S.: Applying the mountain pass theorem to asymptotically linear elliptic equation on $\Bbb{R}^N$.Commun. Partial Differ. Equations 24 (1999), 1731-1758. Zbl 0935.35043, MR 1708107, 10.1080/03605309908821481
Reference: [26] Zahed, H.: Existence investigation of a fourth order semi-linear weighted problem.Int. J. Math. Comput. Sci. 16 (2021), 687-704. Zbl 1455.35106, MR 4195463
Reference: [27] Zahed, H., Alnaser, L. A.: Elliptic weighted problem with indefinite asymptotically linear nonlinearity.J. Math. Stat. 17 (2021), 13-21. 10.3844/jmssp.2021.13.21
Reference: [28] Zhou, H. S.: An application of a mountain pass theorem.Acta Math. Sin., Engl. Ser. 18 (2002), 27-36. Zbl 1018.35020, MR 1894835, 10.1007/s101140100147
.

Files

Files Size Format View
MathBohem_149-2024-2_4.pdf 244.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo