Previous |  Up |  Next

Article

Keywords:
Korteweg–de Vries–Burgers equation; dynamic boundary control; uncertainty; globally exponential stabilization
Summary:
We investigate Korteweg-de Vries-Burgers (KdVB) equation, where the dissipation and dispersion coefficients are unknown, but their lower bounds are known. First, we establish dynamic boundary controls with update laws to globally exponentially stabilize this uncertain system. Secondly, we demonstrate that the dynamic boundary control design is suboptimal to a meaningful functional after some minor modifications of the dynamic boundary controls. In addition, we also consider dynamic boundary controls for the case of unknown dissipation or dispersion coefficients, and obtain corresponding results. Finally, three examples are used to demonstrate the effectiveness of the proposed control design.
References:
[1] Armaou, A., Christofides, P. D.: Wave suppression by nonlinear finite-dimensional control. Chemical Engrg. Sci. 55 (2000), 2627-2640. DOI 
[2] Balogh, A., Krstic, M.: Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration. IEEE Trans. Automat. Control 45 (2000), 1739-1745. DOI  | MR 1791709
[3] Boulanger, A. C., Trautmann, P.: Sparse optimal control of the KdV-Burgers equation on a bounded domain. SIAM J. Control Optim. 55 (2017), 3673-706. DOI  | MR 3725270
[4] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans. Automat. Control 63 (2018), 233-240. DOI  | MR 3744842
[5] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica 103 (2019), 549-557. DOI  | MR 3920865
[6] Cai, X., Liao, L., Zhang, J., Zhang, W.: Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics. Kybernetika 52 (2016), 76-88. DOI  | MR 3482612
[7] Cai, X., Lin, Y., Liu, L., Lin, C.: Control design of a continuous model and its application in highway traffic flow. IEEE Trans. Circuits Systems II: Express Briefs 70 (2023), 2575-2579. DOI 
[8] Cai, X., Lin, C., Liu, L., Zhan, X.: Inverse optimal control for strict-feedforward nonlinear systems with input delays. Int. J. Robust Nonlinear Control 2 8(2018), 2976-2995. DOI  | MR 3790292
[9] Cai, X., Lin, Y., Zhang, J., Lin, C.: Predictor control for wave PDE/nonlinear ODE cascaded system with boundary value-dependent propagation speed. Kybernetika 58 (2022), 400-425. DOI  | MR 4494098
[10] Cai, X., Lin, Y., Zhan, X., Wan, L., Liu, L., Lin, C.: Inverse optimal control of Korteweg-de Vries-Burgers equation. In: Proc. 22nd IFAC World Congress, Yokohama 2023, pp. 1430-1435.
[11] Cai, X., Wu, J., Zhan, X., Zhang, X.: Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika 55 (2019), 727-739. DOI  | MR 4043545
[12] Crepeau, E., Sorine, M.: A reduced model of pulsatile flow in an arterial compartment. Chaos Solitons $\&$ Fractals 34 (2007), 594-605. DOI  | MR 2327436
[13] Chentouf, B., Guesmia, A.: Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach. Nonlinear Analysis: Real World Appl. 65 (2022), 103508. DOI  | MR 4373364
[14] Demiray, H.: Nonlinear waves in a thick-walled viscoelastic tube filled with an inviscid fluid. Int. J. Engrg. Sci. 36 (1998), 345-357. DOI  | MR 1614495
[15] Ding, K., Zhu, Q.: Intermittent observer-based dissipative saturation control for Korteweg-de Vries-Burgers equation with stochastic noise and incomplete measurable information. J. Franklin Inst. Engrg. Appl. Math. 359 (2022), 10206-30. DOI  | MR 4507592
[16] Ding, K., Zhu, Q.: Intermittent static output feedback control for stochastic delayed-switched positive systems with only partially measurable information. IEEE Trans. Automat. Control 68 (2023), 8150-8157. DOI  | MR 4699222
[17] Freeman, A., Kokotovic, P. V.: Inverse optimality in robust stabilization. SIAM J. Control Optim. 34 (1996), 1365-1391. DOI  | MR 1395839
[18] Krstic, M.: On global stabilization of Burgers' equation by boundary control. Systems Control Lett. 37 (1999), 123-141. DOI  | MR 1751258
[19] Krstic, M.: Optimal adaptive control-contradiction in terms or a matter of choosing the right cost functional?. IEEE Trans. Automat. Control 53 (2008), 1942-1947. DOI  | MR 2454761
[20] Krstic, M., Li, Z.: Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1996), 336-350. DOI  | MR 1614799
[21] Liang, S., Wu, K., He, M.: Finite-time boundary stabilization for Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 116 (2023), 106836 (1-10). DOI  | MR 4481172
[22] Liu, W., Krstic, M.: Controlling nonlinear water waves: boundary stabilization of the Korteweg-de Vries-Burgers equation. In: Proc. American Control Conference, San Diego 1999, pp. 1637-1641.
[23] Liu, Z., Wang, J., Ge, H., Cheng, R.: KdV-Burgers equation in the modified continuum model considering the “backward looking” effect. Nonlinear Dynamics 91 (2018), 2007-2017. DOI  | MR 3384263
[24] Liang, S., Ding, D., Wu, K.: Exponential input-to-state stability of delay Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 121 (2023), 107218 (1-13). DOI  | MR 4562011
[25] Komornik, V., Pignotti, C.: Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay. Nonlinear Analysis: Theory, Methods Appl. 191 (2020), 111646. DOI  | MR 4017464
[26] Smaoui, N.: Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dynamics 37 (2004), 75-86. DOI  | MR 2091456
[27] Smaoui, N., Al-Jamal, R.: Dynamics and control of the modified generalized Korteweg-de Vries-Burgers equation with periodic boundary conditions. Nonlinear Dynamics 103 (2021), 987-1009. DOI  | MR 2375938
[28] Sontag, E. D.: A ‘universal’ construction of Artsteins theorem on nonlinear stabilization. SIAM J. Control Optim. 13 (1989), 117-123. DOI  | MR 1014237
Partner of
EuDML logo