[1] Armaou, A., Christofides, P. D.:
Wave suppression by nonlinear finite-dimensional control. Chemical Engrg. Sci. 55 (2000), 2627-2640.
DOI
[2] Balogh, A., Krstic, M.:
Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration. IEEE Trans. Automat. Control 45 (2000), 1739-1745.
DOI |
MR 1791709
[3] Boulanger, A. C., Trautmann, P.:
Sparse optimal control of the KdV-Burgers equation on a bounded domain. SIAM J. Control Optim. 55 (2017), 3673-706.
DOI |
MR 3725270
[4] Cai, X., Bekiaris-Liberis, N., Krstic, M.:
Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans. Automat. Control 63 (2018), 233-240.
DOI |
MR 3744842
[5] Cai, X., Bekiaris-Liberis, N., Krstic, M.:
Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica 103 (2019), 549-557.
DOI |
MR 3920865
[6] Cai, X., Liao, L., Zhang, J., Zhang, W.:
Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics. Kybernetika 52 (2016), 76-88.
DOI |
MR 3482612
[7] Cai, X., Lin, Y., Liu, L., Lin, C.:
Control design of a continuous model and its application in highway traffic flow. IEEE Trans. Circuits Systems II: Express Briefs 70 (2023), 2575-2579.
DOI
[8] Cai, X., Lin, C., Liu, L., Zhan, X.:
Inverse optimal control for strict-feedforward nonlinear systems with input delays. Int. J. Robust Nonlinear Control 2 8(2018), 2976-2995.
DOI |
MR 3790292
[9] Cai, X., Lin, Y., Zhang, J., Lin, C.:
Predictor control for wave PDE/nonlinear ODE cascaded system with boundary value-dependent propagation speed. Kybernetika 58 (2022), 400-425.
DOI |
MR 4494098
[10] Cai, X., Lin, Y., Zhan, X., Wan, L., Liu, L., Lin, C.: Inverse optimal control of Korteweg-de Vries-Burgers equation. In: Proc. 22nd IFAC World Congress, Yokohama 2023, pp. 1430-1435.
[11] Cai, X., Wu, J., Zhan, X., Zhang, X.:
Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika 55 (2019), 727-739.
DOI |
MR 4043545
[12] Crepeau, E., Sorine, M.:
A reduced model of pulsatile flow in an arterial compartment. Chaos Solitons $\&$ Fractals 34 (2007), 594-605.
DOI |
MR 2327436
[13] Chentouf, B., Guesmia, A.:
Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach. Nonlinear Analysis: Real World Appl. 65 (2022), 103508.
DOI |
MR 4373364
[14] Demiray, H.:
Nonlinear waves in a thick-walled viscoelastic tube filled with an inviscid fluid. Int. J. Engrg. Sci. 36 (1998), 345-357.
DOI |
MR 1614495
[15] Ding, K., Zhu, Q.:
Intermittent observer-based dissipative saturation control for Korteweg-de Vries-Burgers equation with stochastic noise and incomplete measurable information. J. Franklin Inst. Engrg. Appl. Math. 359 (2022), 10206-30.
DOI |
MR 4507592
[16] Ding, K., Zhu, Q.:
Intermittent static output feedback control for stochastic delayed-switched positive systems with only partially measurable information. IEEE Trans. Automat. Control 68 (2023), 8150-8157.
DOI |
MR 4699222
[17] Freeman, A., Kokotovic, P. V.:
Inverse optimality in robust stabilization. SIAM J. Control Optim. 34 (1996), 1365-1391.
DOI |
MR 1395839
[18] Krstic, M.:
On global stabilization of Burgers' equation by boundary control. Systems Control Lett. 37 (1999), 123-141.
DOI |
MR 1751258
[19] Krstic, M.:
Optimal adaptive control-contradiction in terms or a matter of choosing the right cost functional?. IEEE Trans. Automat. Control 53 (2008), 1942-1947.
DOI |
MR 2454761
[20] Krstic, M., Li, Z.:
Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1996), 336-350.
DOI |
MR 1614799
[21] Liang, S., Wu, K., He, M.:
Finite-time boundary stabilization for Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 116 (2023), 106836 (1-10).
DOI |
MR 4481172
[22] Liu, W., Krstic, M.: Controlling nonlinear water waves: boundary stabilization of the Korteweg-de Vries-Burgers equation. In: Proc. American Control Conference, San Diego 1999, pp. 1637-1641.
[23] Liu, Z., Wang, J., Ge, H., Cheng, R.:
KdV-Burgers equation in the modified continuum model considering the “backward looking” effect. Nonlinear Dynamics 91 (2018), 2007-2017.
DOI |
MR 3384263
[24] Liang, S., Ding, D., Wu, K.:
Exponential input-to-state stability of delay Korteweg-de Vries-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 121 (2023), 107218 (1-13).
DOI |
MR 4562011
[25] Komornik, V., Pignotti, C.:
Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay. Nonlinear Analysis: Theory, Methods Appl. 191 (2020), 111646.
DOI |
MR 4017464
[26] Smaoui, N.:
Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dynamics 37 (2004), 75-86.
DOI |
MR 2091456
[27] Smaoui, N., Al-Jamal, R.:
Dynamics and control of the modified generalized Korteweg-de Vries-Burgers equation with periodic boundary conditions. Nonlinear Dynamics 103 (2021), 987-1009.
DOI |
MR 2375938
[28] Sontag, E. D.:
A ‘universal’ construction of Artsteins theorem on nonlinear stabilization. SIAM J. Control Optim. 13 (1989), 117-123.
DOI |
MR 1014237