Previous |  Up |  Next

Article

Keywords:
monogenity; power integral basis; theorem of Ore; prime ideal factorization; common index divisor; Newton polygon
Summary:
Let $K $ be a septic number field generated by a root $\theta $ of an irreducible polynomial $ F(x)= x^7+ax^5+b \in \mathbb Z[x]$. In this paper, we explicitly characterize the index $i(K)$ of $K$. More precisely, for all $a$ and $b$, we show that $i(K) \in \{1, 2\}$. Our results answer completely to Problem 22 of W. Narkiewicz's book (2004) for these families of number fields. In particular, we provide sufficient conditions for which $K$ is not monogenic. We illustrate our results by some computational examples.
References:
[1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), 577-583. DOI 10.1142/S0218196716500259 | MR 3506350 | Zbl 1404.11124
[2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), 2257-2265. DOI 10.1142/S1793042114500778 | MR 3273484 | Zbl 1316.11094
[3] Yakkou, H. Ben: On nonmonogenic number fields defined by trinomials of type $x^n+ax^m+b$. Rocky Mt. J. Math. 53 (2023), 685-699. DOI 10.1216/rmj.2023.53.685 | MR 4617905 | Zbl 07731139
[4] Yakkou, H. Ben, Boudine, B.: On the index of the octic number field defined by $x^8+ax+b$. Acta Math. Hung. 170 (2023), 585-607. DOI 10.1007/s10474-023-01353-3 | MR 4643856 | Zbl 07745824
[5] Yakkou, H. Ben, Didi, J.: On monogenity of certain pure number fields of degrees $2^r\cdot3^k\cdot7^s$. Math. Bohem. 149 (2024), 167-183. DOI 10.21136/MB.2023.0071-22 | MR 4767006 | Zbl 7893417
[6] Yakkou, H. Ben, Fadil, L. El: On monogenity of certain pure number fields defined by $x^{p^r}-m$. Int. J. Number Theory 17 (2021), 2235-2242. DOI 10.1142/S1793042121500858 | MR 4322831 | Zbl 1483.11236
[7] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation. Acta Arith. 115 (2004), 85-96. DOI 10.4064/aa115-1-7 | MR 2102808 | Zbl 1064.11084
[8] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). DOI 10.1007/978-3-662-02945-9 | MR 1228206 | Zbl 0786.11071
[9] Davis, C. T., Spearman, B. K.: The index of quartic field defined by a trinomial $X^4+aX+b$. J. Algebra Appl. 17 (2018), Article ID 1850197, 18 pages. DOI 10.1142/S0219498818501979 | MR 3866770 | Zbl 1437.11149
[10] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Abh. König. Gesell. Wiss. Gött. 23 (1878), 202-232 German.
[11] Engstrom, H. T.: On the common index divisors of an algebraic field. Trans. Am. Math. Soc. 32 (1930), 223-237 \99999JFM99999 56.0885.04. DOI 10.2307/1989492 | MR 1501535
[12] Evertse, J.-H., Győry, K.: Unit Equations in Diophantine Number Theory. Cambridge Studies in Advanced Mathematics 146. Cambridge University Press, Cambridge (2015). DOI 10.1017/CBO9781316160749 | MR 3524535 | Zbl 1339.11001
[13] Evertse, J.-H., Győry, K.: Discriminant Equations in Diophantine Number Theory. New Mathematical Monographs 32. Cambridge University Press, Cambridge (2017). DOI 10.1017/CBO9781316160763 | MR 3586280 | Zbl 1361.11002
[14] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms. Birkhäuser, Cham (2019). DOI 10.1007/978-3-030-23865-0 | MR 3970246 | Zbl 1465.11090
[15] Gaál, I., Győry, K.: Index form equations in quintic fields. Acta Arith. 89 (1999), 379-396. DOI 10.4064/aa-89-4-379-396 | MR 1703860 | Zbl 0930.11091
[16] Gaál, I., Pethő, A., Pohst, M.: On the resolution of index form equations in quartic number fields. J. Symb. Comput. 16 (1993), 563-584. DOI 10.1006/jsco.1993.1064 | MR 1279534 | Zbl 0808.11023
[17] Gaál, I., Schulte, N.: Computing all power integral bases of cubic fields. Math. Comput. 53 (1989), 689-696. DOI 10.2307/2008731 | MR 0979943 | Zbl 0677.10013
[18] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. DOI 10.1090/S0002-9947-2011-05442-5 | MR 2833586 | Zbl 1252.11091
[19] Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. Théor. Nombres Bordx. 23 (2021), 667-669. DOI 10.5802/jtnb.782 | MR 2861080 | Zbl 1266.11131
[20] Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné. Acta Arith. 23 (1973), 419-426 French. DOI 10.4064/aa-23-4-419-426 | MR 0437489 | Zbl 0269.12001
[21] Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné. III. Publ. Math. Debr. 23 (1976), 141-165 French. DOI 10.5486/PMD.1976.23.1-2.23 | MR 0437491 | Zbl 0354.10041
[22] Győry, K.: On polynomials with integer coefficients and given discriminant. IV. Publ. Math. Debr. 25 (1978), 155-167. DOI 10.5486/PMD.1978.25.1-2.20 | MR 0485774 | Zbl 0405.12003
[23] Győry, K.: Corps de nombres algébriques d'anneau d'entiers monogéne. Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979. Théorie des nombres. Fascicule 2: Exposés 22 à 33, Index cumulatif 1re à 20e années, 1959/1960 à 1978/1979 Secrétariat Mathématique, Paris (1980), Article ID 26, 7 pages French. MR 0582432 | Zbl 0433.12001
[24] Győry, K.: On discriminants and indices of integers of an algebraic number field. J. Reine Angew. Math. 324 (1981), 114-126. DOI 10.1515/crll.1981.324.114 | MR 0614518 | Zbl 0446.12006
[25] Győry, K.: Bounds for the solutions of decomposable form equations. Publ. Math. Debr. 52 (1998), 1-31. DOI 10.5486/PMD.1998.1618 | MR 1603299 | Zbl 0902.11015
[26] Jakhar, A., Khanduja, S. K., Sangwan, N.: Characterization of primes dividing the index of a trinomial. Int. J. Number Theory 13 (2017), 2505-2514. DOI 10.1142/S1793042117501391 | MR 3713088 | Zbl 1431.11116
[27] Jones, L., White, D.: Monogenic trinomials with non-squarefree discriminant. Int. J. Math. 32 (2021), Article ID 2150089, 21 pages. DOI 10.1142/S0129167X21500890 | MR 4361991 | Zbl 1478.11125
[28] Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Am. Math. Soc. 87 (1983), 579-585. DOI 10.1090/S0002-9939-1983-0687621-6 | MR 0687621 | Zbl 0514.12003
[29] Montes, J., Nart, E.: On a theorem of Ore. J. Algebra 146 (1992), 318-334. DOI 10.1016/0021-8693(92)90071-S | MR 1152908 | Zbl 0762.11045
[30] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics. Springer, Berlin (2004). DOI 10.1007/978-3-662-07001-7 | MR 2078267 | Zbl 1159.11039
[31] Nart, E.: On the index of a number field. Trans. Am. Math. Soc. 289 (1985), 171-183. DOI 10.1090/S0002-9947-1985-0779058-2 | MR 0779058 | Zbl 0563.12006
[32] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. DOI 10.1007/BF01459087 | MR 1512440
[33] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields. Acta Arith. 153 (2012), 393-414. DOI 10.4064/aa153-4-4 | MR 2925379 | Zbl 1255.11052
[34] Pethő, A., Ziegler, V.: On biquadratic fields that admit unit power integral basis. Acta Math. Hung. 133 (2011), 221-241. DOI 10.1007/s10474-011-0103-5 | MR 2846093 | Zbl 1265.11097
[35] Żyliński, E. von: Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper. Math. Ann. 73 (1913), 273-274 German \99999JFM99999 44.0241.02. DOI 10.1007/BF01456716 | MR 1511731
Partner of
EuDML logo