Previous |  Up |  Next

Article

Keywords:
interval-valued vector optimization problem; quasidifferentiable $\mathfrak {F}$-convexity; LU-Pareto optimality
Summary:
The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak{F}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.
References:
[1] Antczak, T.: Optimality conditions in quasidifferentiable vector optimization. J. Optim. Theory Appl. 171 (2016), 708-725. DOI  | MR 3557446
[2] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150. DOI  | MR 3657212
[3] Bhatia, D., Jain, P.: Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs. Optimization 31 (1994), 239-244. DOI 
[4] Bhurjee, A. K., Panda, G.: Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76 (2012), 273-288. DOI  | MR 3000987
[5] Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems. J. Optim. Theory Appl. 106 (2000), 265-296. DOI  | MR 1788925
[6] Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N.: Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces. J. Optim. Theory Appl. 103 (1999), 65-73. DOI 10.1023/A:1021769232224 | MR 1715008
[7] Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland, New York 1983. MR 0780745
[8] Chinchuluun, A., Pardalos, P. M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (2007), 29-50. DOI  | MR 2332820
[9] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. MR 0709590
[10] Coladas, L., Li, Z., Wang, S.: Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces. Bull. Austral. Math. Soc. 50 (1994), 205-218. DOI  | MR 1296749
[11] Craven, B. D.: Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989), 49-64. DOI 10.1080/01630568908816290 | MR 0978802
[12] Demyanov, V. F., Rubinov, A. M.: On quasidifferentiable functional. Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR 0556111
[13] Demyanov, V. F., Rubinov, A. M.: On some approaches to the non-smooth optimization problem. Ekonom. Matem. Metody 17 (1981), 1153-1174. MR 0653043
[14] Abdouni, B. El., Thibault, L.: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces. Optimization 26 (1992), 277-285. DOI  | MR 1236612
[15] Eppler, K., Luderer, B.: The Lagrange principle and quasidifferential calculus. Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR 0909080
[16] Gao, Y.: Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization. J. Optim. Theory Appl. 104 (2000), 377-394. DOI  | MR 1752323
[17] Gao, Y.: Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization. In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR 1766796
[18] Huang, N. J., Li, J., Wu, S. Y.: Optimality conditions for vector optimization problems. J. Optim. Theory Appl. 142 (2009), 323-342. DOI  | MR 2525793
[19] Jayswal, A., Stancu-Minasian, I. M., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127. DOI  | MR 2862082
[20] Jeyakumar, V., Yang, X. Q.: Convex composite multi-objective nonsmooth programming. Math. Program. 59 (1993), 325-343. DOI  | MR 1226821
[21] Kanniappan, P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming. J. Optim. Theory Appl. 40 (1983), 167-174. DOI  | MR 0703314
[22] Kuntz, L., Scholtes, S.: Constraint qualifications in quasidifferentiable optimization. Math. Program. 60 (1993), 339-347. DOI  | MR 1234879
[23] Luc, D. T.: Theory of Vector Optimization. Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. DOI 10.1007/978-3-642-50280-4_3 | MR 1116766 | Zbl 0654.90082
[24] Luderer, B., Rösiger, R.: On Shapiro's results in quasidifferential calculus. Math. Program. 46 (1990), 403-407. DOI  | MR 1054147
[25] Miettinen, K. M.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR 1784937
[26] Minami, M.: Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space. J. Optim. Theory Appl. 41 (1983), 451-461. DOI  | MR 0728312
[27] Polyakova, L. N.: On the minimization of a quasidifferentiable function subject to equality-type constraints. Math. Program. Studies 29 (1986), 44-55. DOI  | MR 0837885
[28] Shapiro, A.: On optimality conditions in quasidifferentiable optimization. SIAM Control Appl. 22 (1984), 610-617. DOI  | MR 0747972
[29] Sun, Y., Wang, L.: Optimality conditions and duality in nondifferentiable interval-valued programming. J. Industr. Management Optim. 9 (2013), 131-142. DOI 10.3934/jimo.2013.9.131 | MR 3003020
[30] Uderzo, A.: Quasi-multipliers rules for quasidifferentiable extremum problems. Optimization 51 (2002), 761-795. DOI  | MR 1941714
[31] Wang, S.: Lagrange conditions in nonsmooth and multiobjective mathematical programming. Math. Econom. 1 (1984), 183-193.
[32] Ward, D. E.: A constraint qualification in quasidifferentiable programming. Optimization 22 (1991), 661-668. DOI  | MR 1120494
[33] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European J. Oper. Res. 176 (2007), 46-59. DOI  | MR 2265133
[34] Xia, Z. Q., Song, C. L., Zhang, L. W.: On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization. Int. J. Pure Appl. Math. 23 (2005), 299-310. MR 2176203
[35] Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014), 607-631. DOI 10.1007/s11590-012-0601-6 | MR 3163292
[36] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization. In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR 2461173
Partner of
EuDML logo