[1] Antczak, T.:
Optimality conditions in quasidifferentiable vector optimization. J. Optim. Theory Appl. 171 (2016), 708-725.
DOI |
MR 3557446
[2] Antczak, T.:
Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150.
DOI |
MR 3657212
[3] Bhatia, D., Jain, P.:
Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs. Optimization 31 (1994), 239-244.
DOI
[4] Bhurjee, A. K., Panda, G.:
Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76 (2012), 273-288.
DOI |
MR 3000987
[5] Bolintinéanu, S.:
Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems. J. Optim. Theory Appl. 106 (2000), 265-296.
DOI |
MR 1788925
[6] Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N.:
Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces. J. Optim. Theory Appl. 103 (1999), 65-73.
DOI 10.1023/A:1021769232224 |
MR 1715008
[7] Chankong, V., Haimes, Y.:
Multiobjective Decision Making: Theory and Methodology. North-Holland, New York 1983.
MR 0780745
[8] Chinchuluun, A., Pardalos, P. M.:
A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (2007), 29-50.
DOI |
MR 2332820
[9] Clarke, F. H.:
Optimization and Nonsmooth Analysis. Wiley, New York 1983.
MR 0709590
[10] Coladas, L., Li, Z., Wang, S.:
Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces. Bull. Austral. Math. Soc. 50 (1994), 205-218.
DOI |
MR 1296749
[12] Demyanov, V. F., Rubinov, A. M.:
On quasidifferentiable functional. Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.)
MR 0556111
[13] Demyanov, V. F., Rubinov, A. M.:
On some approaches to the non-smooth optimization problem. Ekonom. Matem. Metody 17 (1981), 1153-1174.
MR 0653043
[14] Abdouni, B. El., Thibault, L.:
Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces. Optimization 26 (1992), 277-285.
DOI |
MR 1236612
[15] Eppler, K., Luderer, B.:
The Lagrange principle and quasidifferential calculus. Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192.
MR 0909080
[16] Gao, Y.:
Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization. J. Optim. Theory Appl. 104 (2000), 377-394.
DOI |
MR 1752323
[17] Gao, Y.:
Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization. In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162.
MR 1766796
[18] Huang, N. J., Li, J., Wu, S. Y.:
Optimality conditions for vector optimization problems. J. Optim. Theory Appl. 142 (2009), 323-342.
DOI |
MR 2525793
[19] Jayswal, A., Stancu-Minasian, I. M., Ahmad, I.:
On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.
DOI |
MR 2862082
[20] Jeyakumar, V., Yang, X. Q.:
Convex composite multi-objective nonsmooth programming. Math. Program. 59 (1993), 325-343.
DOI |
MR 1226821
[21] Kanniappan, P.:
Necessary conditions for optimality of nondifferentiable convex multiobjective programming. J. Optim. Theory Appl. 40 (1983), 167-174.
DOI |
MR 0703314
[22] Kuntz, L., Scholtes, S.:
Constraint qualifications in quasidifferentiable optimization. Math. Program. 60 (1993), 339-347.
DOI |
MR 1234879
[24] Luderer, B., Rösiger, R.:
On Shapiro's results in quasidifferential calculus. Math. Program. 46 (1990), 403-407.
DOI |
MR 1054147
[25] Miettinen, K. M.:
Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004.
MR 1784937
[26] Minami, M.:
Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space. J. Optim. Theory Appl. 41 (1983), 451-461.
DOI |
MR 0728312
[27] Polyakova, L. N.:
On the minimization of a quasidifferentiable function subject to equality-type constraints. Math. Program. Studies 29 (1986), 44-55.
DOI |
MR 0837885
[28] Shapiro, A.:
On optimality conditions in quasidifferentiable optimization. SIAM Control Appl. 22 (1984), 610-617.
DOI |
MR 0747972
[29] Sun, Y., Wang, L.:
Optimality conditions and duality in nondifferentiable interval-valued programming. J. Industr. Management Optim. 9 (2013), 131-142.
DOI 10.3934/jimo.2013.9.131 |
MR 3003020
[30] Uderzo, A.:
Quasi-multipliers rules for quasidifferentiable extremum problems. Optimization 51 (2002), 761-795.
DOI |
MR 1941714
[31] Wang, S.: Lagrange conditions in nonsmooth and multiobjective mathematical programming. Math. Econom. 1 (1984), 183-193.
[32] Ward, D. E.:
A constraint qualification in quasidifferentiable programming. Optimization 22 (1991), 661-668.
DOI |
MR 1120494
[33] Wu, H. C.:
The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European J. Oper. Res. 176 (2007), 46-59.
DOI |
MR 2265133
[34] Xia, Z. Q., Song, C. L., Zhang, L. W.:
On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization. Int. J. Pure Appl. Math. 23 (2005), 299-310.
MR 2176203
[35] Zhang, J., Liu, S., Li, L., Feng, Q.:
The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014), 607-631.
DOI 10.1007/s11590-012-0601-6 |
MR 3163292
[36] Zhou, H. C., Wang, Y. J.:
Optimality condition and mixed duality for interval-valued optimization. In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323.
MR 2461173