Previous |  Up |  Next

Article

Title: Což takhle dát si fraktál? – 2. část (Czech)
Title: How about a fractal? – Part 2 (English)
Author: Fabián, Tomáš
Language: Czech
Journal: Učitel matematiky
ISSN: 1210-9037
Volume: 33
Issue: 2
Year: 2025
Pages: 101-113
Summary lang: English
.
Category: math
.
Summary: The article begins by briefly answering the question of what a fractal is and provides reasons why fractals are worth exploring in education. Various methods of constructing fractals suitable for classroom use are then presented. Fractals can be easily integrated into the curriculum as early as upper primary school, either as part of a comprehensive course or as individual thematic units. Constructions are primarily created using GeoGebra, but also through traditional methods (pencil, paper) or other digital tools (PowerPoint, web applications). The conclusion demonstrates that the concept of fractal dimension can be accessible to high school students. (English)
.
Date available: 2025-06-16T12:56:58Z
Last updated: 2025-06-17
Stable URL: http://hdl.handle.net/10338.dmlcz/153013
.
Reference: [1] Choate, J., Devaney, R. L., Foster, A.: Fractals: A tool kit of dynamics activities.(1999). Key Curriculum Press.
Reference: [2] Divišová, B.: Fraktály a jak o nich učit.(2013). Učitel matematiky, 21(3), 144-158.
Reference: [3] Edgar, E.: Measure, topology, and fractal geometry.(2008). Springer. MR 2356043
Reference: [4] Falconer, K.: Fractal geometry: Mathematical foundations and applications.(2014). John Wiley & Sons. MR 3236784
Reference: [5] Lesmoir-Gordon, N., Rood, W., Edney, R.: Introducing: Fractal geometry.(2006). Icon Books.
Reference: [6] Linton, O.: Fraktály: Na hraně chaosu.(2021). Dokořán.
Reference: [7] Mandelbrot, B. B.: The fractal geometry of nature.(2022). Echo Point Books & Media. MR 0665254
Reference: [8] Peitgen, H., Jürgens, H., Saupe, D.: Chaos and fractals: New frontiers of science.(1992a). Springer-Verlag. MR 2031217
Reference: [9] Peitgen, H., Jürgens, H., Saupe, D.: Fractals for the classroom: Part one introduction to fractals and chaos.(1992b). Springer-Verlag. MR 1132883
Reference: [10] Peitgen, H., Jürgens, H., Saupe, D., Maletsky, E., Perciante, T., Yunker, L.: Fractals for the classroom: Strategic activities volume one.(1993). Springer-Verlag. MR 1165945
Reference: [11] Ventrella, J.: The family tree of fractal curves: A taxonomy of plane-filling curves using complex integer lattices.(2019). Eyebrain Books.
Reference: [12] Zelinka, I., Včelař, F., Čandík, M.: Fraktální geometrie: principy a aplikace.(2006). BEN - technická literatura.
.

Fulltext not available (moving wall 12 months)

Partner of
EuDML logo