Previous |  Up |  Next

Article

Title: Discontinuous Galerkin method with Godunov-like numerical fluxes for traffic flows on networks. Part II: Maximum principle (English)
Author: Vacek, Lukáš
Author: Shu, Chi-Wang
Author: Kučera, Václav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 3
Year: 2025
Pages: 341-366
Summary lang: English
.
Category: math
.
Summary: We prove the maximum principle for a discontinuous Galerkin (DG) method applied to the numerical solution of traffic flow problems on networks described by the Lighthill-Whitham-Richards equations. The paper is a followup of the preceding paper, Part I, where $L^2$ stability of the scheme is analyzed. At traffic junctions, we consider numerical fluxes based on Godunov's flux derived in our previous work. We also construct a new Godunov-like numerical flux taking into account right of way at the junction to cover a wider variety of scenarios in the analysis. These fluxes are easily constructible for any number of incoming and outgoing roads, respecting the drivers' preferences. We prove that the explicit Euler or SSP DG scheme with limiters satisfies a maximum principle on general networks. Numerical experiments demonstrate the obtained results. (English)
Keyword: traffic flow
Keyword: discontinuous Galerkin method
Keyword: Godunov numerical flux
Keyword: maximum principle
MSC: 35L04
MSC: 65M60
MSC: 76a30
DOI: 10.21136/AM.2025.0018-25
.
Date available: 2025-07-01T12:18:21Z
Last updated: 2025-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153023
.
Reference: [1] Canic, S., Piccoli, B., Qiu, J.-M., Ren, T.: Runge-Kutta discontinuous Galerkin method for traffic flow model on networks.J. Sci. Comput. 63 (2015), 233-255. Zbl 1321.90034, MR 3315275, 10.1007/s10915-014-9896-z
Reference: [2] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework.Math. Comput. 52 (1989), 411-435. Zbl 0662.65083, MR 0983311, 10.2307/2008474
Reference: [3] Coclite, G. M., Garavello, M., Piccoli, B.: Traffic flow on a road network.SIAM J. Math. Anal. 36 (2005), 1862-1886. Zbl 1114.90010, MR 2178224, 10.1137/S0036141004402683
Reference: [4] Monache, M. L. Delle, Goatin, P., Piccoli, B.: Priority-based Riemann solver for traffic flow on networks.Commun. Math. Sci. 16 (2018), 185-211. Zbl 1395.90072, MR 3787209, 10.4310/CMS.2018.v16.n1.a9
Reference: [5] Jiang, G., Shu, C.-W.: On a cell entropy inequality for discontinuous Galerkin methods.Math. Comput. 62 (1994), 531-538. Zbl 0801.65098, MR 1223232, 10.1090/S0025-5718-1994-1223232-7
Reference: [6] Shu, C.-W.: Discontinuous Galerkin methods: General approach and stability.Available at https://www3.nd.edu/ {zxu2/acms60790S15/DG-general-approach.pdf} (2009), 44 pages. MR 2531713
Reference: [7] Vacek, L., Kučera, V.: Discontinuous Galerkin method for macroscopic traffic flow models on networks.Commun. Appl. Math. Comput. 4 (2022), 986-1010. Zbl 1513.65383, MR 4446828, 10.1007/s42967-021-00169-8
Reference: [8] Vacek, L., Kučera, V.: Godunov-like numerical fluxes for conservation laws on networks.J. Sci. Comput. 97 (2023), Article ID 70, 27 pages. Zbl 1526.65047, MR 4663639, 10.1007/s10915-023-02386-0
Reference: [9] Vacek, L., Shu, C.-W., Kučera, V.: Discontinuous Galerkin method with Godunov-like numerical fluxes for traffic flows on networks. Part I: $L^2$ stability.(to appear) in Appl. Math., Praha (2025). MR 4816401, 10.21136/AM.2025.0017-25
Reference: [10] Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws.J. Comput. Phys. 229 (2010), 3091-3120. Zbl 1187.65096, MR 2601091, 10.1016/j.jcp.2009.12.030
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo