Previous |  Up |  Next

Article

Title: $H_{\infty }$ analysis of cooperative multi-agent systems by adaptive interpolation (English)
Author: Tomljanović, Zoran
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 3
Year: 2025
Pages: 367-386
Summary lang: English
.
Category: math
.
Summary: We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the $H_{\infty }$ norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient $H_{\infty }$ norm calculation. The convergence of this approach depends on initial interpolation points, so we present approaches to their determination. Since the analysis of multi-agent systems is important from different perspectives, several comparisons are presented in the section on numerical experiments. A graph Laplacian matrix of an inter-agent interaction graph is a foundational element in modeling and analyzing multi-agent systems. We consider various graph topology matrices, system parameters, and excitations of different agents. Different strategies for selecting initial interpolation points are also compared with baseline approaches for calculating the $H_{\infty }$ norm. (English)
Keyword: multi-agent system
Keyword: $H_{\infty }$ norm
Keyword: network robustness
Keyword: adaptive interpolation
MSC: 41A05
MSC: 93A16
MSC: 93C05
MSC: 93C95
DOI: 10.21136/AM.2025.0218-24
.
Date available: 2025-07-01T12:19:29Z
Last updated: 2025-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153024
.
Reference: [1] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: A greedy subspace method for computing the $\mathcal{L}_\infty$-norm.PAMM, Proc. Appl. Math. Mech. 17 (2017), 751-752. 10.1002/pamm.201710343
Reference: [2] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of $\mathcal{L}_\infty$-norms by a greedy subspace method.SIAM J. Matrix Anal. Appl. 38 (2017), 1496-1516. Zbl 1379.65020, MR 3735291, 10.1137/16M1086200
Reference: [3] Antoulas, A. C.: Approximation of Large-Scale Dynamical Systems.Advances in Design and Control 6. SIAM, Philadelphia (2005). Zbl 1112.93002, MR 2155615, 10.1137/1.9780898718713
Reference: [4] Antoulas, A. C., Beattie, C. A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems.Efficient Modeling and Control of Large-Scale Systems Springer, New York (2010), 3-58. Zbl 1229.65103, MR 0593759, 10.1007/978-1-4419-5757-3_1
Reference: [5] Antoulas, A. C., Beattie, C. A., Güğercin, S.: Interpolatory Methods for Model Reduction.Computational Science & Engineering 21. SIAM, Philadelphia (2020). Zbl 1553.93002, MR 4072177, 10.1137/1.9781611976083
Reference: [6] Antoulas, A. C., Sorensen, D. C., Gugercin, S.: A survey of model reduction methods for large-scale systems.Structured Matrices in Mathematics, Computer Science, and Engineering. I Contemporary Mathematcs 280. AMS, Providence (2001), 193-219. Zbl 1048.93014, MR 1850408, 10.1090/conm/280
Reference: [7] Baur, U., Beattie, C. A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction.SIAM J. Sci. Comput. 33 (2011), 2489-2518. Zbl 1254.93032, MR 2861634, 10.1137/090776925
Reference: [8] Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction.Syst. Control Lett. 58 (2009), 225-232. Zbl 1159.93317, MR 2494198, 10.1016/j.sysconle.2008.10.016
Reference: [9] Benner, P., Breiten, T., Damm, T.: Generalised tangential interpolation for model reduction of discrete-time MIMO bilinear systems.Int. J. Control 84 (2011), 1398-1407. Zbl 1230.93010, MR 2830869, 10.1080/00207179.2011.601761
Reference: [10] Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems.SIAM Rev. 57 (2015), 483-531. Zbl 1339.37089, MR 3419868, 10.1137/130932715
Reference: [11] Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N.: Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm.ZAMM, Z. Angew. Math. Mech. 96 (2016), 604-619. Zbl 1538.74119, MR 3502967, 10.1002/zamm.201400158
Reference: [12] Benner, P., Mehrmann, V., (eds.), D. C. Sorensen: Dimension Reduction of Large-Scale Systems.Lecture Notes in Computational Science and Engineering 45. Springer, Berlin (2005). Zbl 1066.65004, MR 2516498, 10.1007/3-540-27909-1
Reference: [13] Benner, P., Sima, V., Voigt, M.: $\mathcal{L}_\infty$-norm computation for continuous-time descriptor systems using structured matrix pencils.IEEE Trans. Automat. Control 57 (2012), 233-238. Zbl 1369.93174, MR 2917665, 10.1109/TAC.2011.2161833
Reference: [14] Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its {$\mathcal{L}_{\infty}$}-norm.Syst. Control Lett. 15 (1990), 1-7. Zbl 0704.93014, MR 1065342, 10.1016/0167-6911(90)90037-U
Reference: [15] Bruinsma, N. A., Steinbuch, M.: A fast algorithm to compute the $H_{\infty}$-norm of a transfer function matrix.Syst. Control Lett. 14 (1990), 287-293. Zbl 0699.93021, MR 1052637, 10.1016/0167-6911(90)90049-Z
Reference: [16] Dileep, G.: A survey on smart grid technologies and applications.Renewable Energy 146 (2020), 2589-2625. 10.1016/j.renene.2019.08.092
Reference: [17] Gallivan, K., Vandendorpe, A., Dooren, P. Van: Model reduction of MIMO systems via tangential interpolation.SIAM J. Matrix Anal. Appl. 26 (2004), 328-349. Zbl 1078.41016, MR 2124150, 10.1137/S0895479803423925
Reference: [18] Gugercin, S., Antoulas, A. C., Beattie, C.: $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems.SIAM J. Matrix Anal. Appl. 30 (2008), 609-638. Zbl 1159.93318, MR 2421462, 10.1137/060666123
Reference: [19] Haddad, W. M., Hui, Q., Lee, J.: Network Information Systems: A Dynamical Systems Approach.Other Titles in Applied Mathematics 191. SIAM, Philadelphia (2023). Zbl 1520.93002, MR 4625045, 10.1137/1.9781611977547
Reference: [20] Hagberg, A. A., Schult, D. A., Swart, P. J.: Exploring network structure, dynamics, and function using networkX.Proceedings of the 7th Python in Science Conference (SciPy2008) SciPy, Pasadena (2008), 11-16.
Reference: [21] Leinhardt, S.: Social Networks: A Developing Paradigm.Academic Press, New York (1977). 10.1016/C2013-0-11063-X
Reference: [22] Nakić, I., Tolić, D., Palunko, I., Tomljanović, Z.: Numerically efficient agents-to-group $H_{\infty}$ analysis.IFAC-PapersOnLine 55 (2022), 199-204. 10.1016/j.ifacol.2022.09.095
Reference: [23] Nakić, I., Tolić, D., Tomljanović, Z., Palunko, I.: Numerically efficient ${H}_{\infty}$ analysis of cooperative multi-agent systems.J. Franklin Inst. 359 (2022), 9110-9128. Zbl 1501.93012, MR 4498292, 10.1016/j.jfranklin.2022.09.013
Reference: [24] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113
Reference: [25] Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., Jia, W.: Influence analysis in social networks: A survey.J. Network Comput. Appl. 106 (2018), 17-32. 10.1016/j.jnca.2018.01.005
Reference: [26] Ren, W., Beard, R. W.: Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications.Communications and Control Engineering. Springer, London (2008). Zbl 1144.93002, 10.1007/978-1-84800-015-5
Reference: [27] Rommes, J., Martins, N.: Efficient computation of transfer function dominant poles using subspace acceleration.IEEE Trans. Power Syst. 21 (2006), 1218-1226. 10.1109/TPWRS.2006.876671
Reference: [28] Rommes, J., Sleijpen, G. L. G.: Convergence of the dominant pole algorithm and Rayleigh quotient iteration.SIAM J. Matrix Anal. Appl. 30 (2008), 346-363. Zbl 1165.65016, MR 2399584, 10.1137/060671401
Reference: [29] Sorrentino, F., Tolić, D., Fierro, R., Picozzi, S., Gordon, J. R., Mammoli, A.: Stability analysis of a model for the market dynamics of a smart grid.52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 4964-4970. 10.1109/CDC.2013.6760668
Reference: [30] Tolić, D.: $\mathcal{L}_p$-stability with respect to sets applied towards self-triggered communication for single-integrator consensus.52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 3409-3414. 10.1109/CDC.2013.6760405
Reference: [31] Tolić, D., Jeličić, V., Bilas, V.: Resource management in cooperative multi-agent networks through self-triggering.IET Control Theory Appl. 9 (2015), 915-928. MR 3364336, 10.1049/iet-cta.2014.0576
Reference: [32] Tolić, D., Palunko, I., Ivanović, A., Car, M., Bogdan, S.: Multi-agent control in degraded communication environments.2015 European Control Conference (ECC) IEEE, Los Alamitos (2015), 404-409. MR 3364036, 10.1109/ECC.2015.7330577
Reference: [33] Tomljanović, Z., Voigt, M.: Semi-active $\mathcal{H}_\infty$ damping optimization by adaptive interpolation.Numer. Linear Algebra Appl. 27 (2020), Article ID e2300, 17 pages. Zbl 1463.93076, MR 4157212, 10.1002/nla.2300
Reference: [34] Wang, Y., Garcia, E., Casbeer, D., (eds.), F. Zhang: Cooperative Control of Multi-Agent Systems: Theory and Applications.John Wiley & Sons, Hoboken (2017). Zbl 1406.93005, MR 3618878, 10.1002/9781119266235
Reference: [35] Yue, Y., Meerbergen, K.: Accelerating optimization of parametric linear systems by model order reduction.SIAM J. Optim. 23 (2013), 1344-1370. Zbl 1273.35279, MR 3071415, 10.1137/120869171
Reference: [36] Zhou, K., Doyle, J. C., Glover, K.: Robust and Optimal Control.Prentice Hall, Upper Saddle River (1996). Zbl 0999.49500
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo