[1] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.:
A greedy subspace method for computing the $\mathcal{L}_\infty$-norm. PAMM, Proc. Appl. Math. Mech. 17 (2017), 751-752.
DOI 10.1002/pamm.201710343
[2] Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.:
Large-scale computation of $\mathcal{L}_\infty$-norms by a greedy subspace method. SIAM J. Matrix Anal. Appl. 38 (2017), 1496-1516.
DOI 10.1137/16M1086200 |
MR 3735291 |
Zbl 1379.65020
[6] Antoulas, A. C., Sorensen, D. C., Gugercin, S.:
A survey of model reduction methods for large-scale systems. Structured Matrices in Mathematics, Computer Science, and Engineering. I Contemporary Mathematcs 280. AMS, Providence (2001), 193-219.
DOI 10.1090/conm/280 |
MR 1850408 |
Zbl 1048.93014
[11] Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N.:
Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm. ZAMM, Z. Angew. Math. Mech. 96 (2016), 604-619.
DOI 10.1002/zamm.201400158 |
MR 3502967 |
Zbl 1538.74119
[14] Boyd, S., Balakrishnan, V.:
A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its {$\mathcal{L}_{\infty}$}-norm. Syst. Control Lett. 15 (1990), 1-7.
DOI 10.1016/0167-6911(90)90037-U |
MR 1065342 |
Zbl 0704.93014
[20] Hagberg, A. A., Schult, D. A., Swart, P. J.: Exploring network structure, dynamics, and function using networkX. Proceedings of the 7th Python in Science Conference (SciPy2008) SciPy, Pasadena (2008), 11-16.
[22] Nakić, I., Tolić, D., Palunko, I., Tomljanović, Z.:
Numerically efficient agents-to-group $H_{\infty}$ analysis. IFAC-PapersOnLine 55 (2022), 199-204.
DOI 10.1016/j.ifacol.2022.09.095
[25] Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., Jia, W.:
Influence analysis in social networks: A survey. J. Network Comput. Appl. 106 (2018), 17-32.
DOI 10.1016/j.jnca.2018.01.005
[26] Ren, W., Beard, R. W.:
Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Communications and Control Engineering. Springer, London (2008).
DOI 10.1007/978-1-84800-015-5 |
Zbl 1144.93002
[27] Rommes, J., Martins, N.:
Efficient computation of transfer function dominant poles using subspace acceleration. IEEE Trans. Power Syst. 21 (2006), 1218-1226.
DOI 10.1109/TPWRS.2006.876671
[29] Sorrentino, F., Tolić, D., Fierro, R., Picozzi, S., Gordon, J. R., Mammoli, A.:
Stability analysis of a model for the market dynamics of a smart grid. 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 4964-4970.
DOI 10.1109/CDC.2013.6760668
[30] Tolić, D.:
$\mathcal{L}_p$-stability with respect to sets applied towards self-triggered communication for single-integrator consensus. 52nd IEEE Conference on Decision and Control IEEE, Los Alamitos (2013), 3409-3414.
DOI 10.1109/CDC.2013.6760405
[31] Tolić, D., Jeličić, V., Bilas, V.:
Resource management in cooperative multi-agent networks through self-triggering. IET Control Theory Appl. 9 (2015), 915-928.
DOI 10.1049/iet-cta.2014.0576 |
MR 3364336
[32] Tolić, D., Palunko, I., Ivanović, A., Car, M., Bogdan, S.:
Multi-agent control in degraded communication environments. 2015 European Control Conference (ECC) IEEE, Los Alamitos (2015), 404-409.
DOI 10.1109/ECC.2015.7330577 |
MR 3364036
[33] Tomljanović, Z., Voigt, M.:
Semi-active $\mathcal{H}_\infty$ damping optimization by adaptive interpolation. Numer. Linear Algebra Appl. 27 (2020), Article ID e2300, 17 pages.
DOI 10.1002/nla.2300 |
MR 4157212 |
Zbl 1463.93076
[36] Zhou, K., Doyle, J. C., Glover, K.:
Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996).
Zbl 0999.49500