[3] Abgrall, R.: 
Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations. SIAM J. Sci. Comput. 31 (2009), 2419-2446. 
DOI 10.1137/040615997 | 
MR 2520283 | 
Zbl 1197.65167[4] Bokanowski, O., Falcone, M., Sahu, S.: 
An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016), A171--A195. 
DOI 10.1137/140998482 | 
MR 3449908 | 
Zbl 1407.65093[7] Carlini, E., Ferretti, R., Russo, G.: 
A weighted essentially non-oscillator, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005), 1071-1091. 
DOI 10.1137/040608787 | 
MR 2199921 | 
Zbl 1105.65090[11] Henrick, A. K., Aslam, T. D., Powers, J. M.: 
Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points. J. Comput. Phys. 207 (2005), 542-567. 
DOI 10.1016/j.jcp.2005.01.023 | 
Zbl 1072.65114[16] Kim, K., Hong, U., Ri, K., Yu, J.: 
Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Appl. Math., Praha 66 (2021), 599-617. 
DOI 10.21136/AM.2021.0368-19 | 
MR 4283305 | 
Zbl 1554.65212[22] Qiu, J.-M., Shu, C.-W.: 
Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws. SIAM J. Sci. Comput. 31 (2008), 584-607. 
DOI 10.1137/070687487 | 
MR 2460790 | 
Zbl 1186.65123