Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Kirchhoff type problem; Orlicz-Sobolev space; $\Delta _{2}$-condition
Summary:
We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.
References:
[1] Benci, V., Fortunato, D., Pisani, L.: Soliton like solutions of a Lorentz invariant equation in dimension 3. Rev. Math. Phys. 10 (1998), 315-344. DOI 10.1142/S0129055X98000100 | MR 1626832 | Zbl 0921.35177
[2] Dacorogna, B.: Introduction to the Calculus of Variations. World Scientific, Singapore (2025). DOI 10.1142/q0451 | MR 4810953 | Zbl 1548.49001
[3] Donaldson, T.: Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Differ. Equations 10 (1971), 507-528. DOI 10.1016/0022-0396(71)90009-X | MR 0298472 | Zbl 0218.35028
[4] Donaldson, T. K., Trudinger, N. S.: Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8 (1971), 52-75. DOI 10.1016/0022-1236(71)90018-8 | MR 0301500 | Zbl 0216.15702
[5] Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\Bbb{R}^N$. Funkc. Ekvacioj, Ser. Int. 49 (2006), 235-267. DOI 10.1619/fesi.49.235 | MR 2271234 | Zbl 1387.35405
[6] Fukagai, N., Ito, M., Narukawa, K.: Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term. Proc. R. Soc. Edinb., Sect. A, Math. 139 (2009), 73-106. DOI 10.1017/S0308210507000765 | MR 2487034 | Zbl 1169.35017
[7] Fukagai, N., Narukawa, K.: Nonlinear eigenvalue problem for a model equation of an elastic surface. Hiroshima Math. J. 25 (1995), 19-41. DOI 10.32917/hmj/1206127823 | MR 1322600 | Zbl 0836.35112
[8] Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. (4) 186 (2007), 539-564. DOI 10.1007/s10231-006-0018-x | MR 2317653 | Zbl 1223.35132
[9] Azorero, J. Garcia, Alonso, I. Peral: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323 (1991), 877-895. DOI 10.1090/S0002-9947-1991-1083144-2 | MR 1083144 | Zbl 0729.35051
[10] Hssini, E. M., Tsouli, N., Haddaoui, M.: Existence results for a Kirchhoff type equation in Orlicz-Sobolev spaces. Adv. Pure Appl. Math. 8 (2017), 197-208. DOI 10.1515/apam-2016-0065 | MR 3667067 | Zbl 1381.35041
[11] Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin) 13. Springer, Paris (1993), French. MR 1276944 | Zbl 0797.58005
[12] Khiddi, M., Sbai, S. M.: Infinitely many solutions for non-local elliptic non-degenerate $p$-Kirchhoff equations with critical exponent. Complex Var. Elliptic Equ. 65 (2020), 368-380. DOI 10.1080/17476933.2019.1627527 | MR 4052692 | Zbl 1430.35255
[13] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. DOI 10.4171/RMI/6 | MR 0834360 | Zbl 0704.49005
[14] Mihăilescu, M., Repovš, D.: Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces. Appl. Math. Comput. 217 (2011), 6624-6632. DOI 10.1016/j.amc.2011.01.050 | MR 2773249 | Zbl 1211.35117
[15] Tsouli, N., Haddaoui, M., Hssini, E. M.: Multiple solutions for a critical $p(x)$-Kirchhoff type equations. Bol. Soc. Parana Mat. (3) 38 (2020), 197-211. MR 3912304 | Zbl 1431.35014
Partner of
EuDML logo