Previous |  Up |  Next

Article

Title: Optimality conditions for interval-valued vector equilibrium problems (English)
Author: Prasad, Ashish Kumar
Author: Khatri, Julie
Author: Ahmad, Izhar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 5
Year: 2025
Pages: 688-711
Summary lang: English
.
Category: math
.
Summary: In the article, one formulates Fritz John type and Karush-Kuhn-Tucker type necessary conditions for an interval-valued vector equilibrium problem having a locally LU-efficient solution, where convexificators demonstrate the solutions that are regular. Sufficient conditions for a locally weak LU-efficient solution have been entrenched by imposing appropriate assumptions along with generalized convexity. Some applications are presented for a constrained interval-valued vector variational inequality and a constrained interval-valued vector optimization problem. (English)
Keyword: interval-valued vector equilibrium problem
Keyword: locally LU-efficient solution
Keyword: optimality
Keyword: convexificators
MSC: 49J52
MSC: 90C46
MSC: 91B50
DOI: 10.14736/kyb-2025-5-0688
.
Date available: 2025-12-19T22:35:32Z
Last updated: 2025-12-19
Stable URL: http://hdl.handle.net/10338.dmlcz/153210
.
Reference: [1] Bhurjee, A. K., Panda, G.: Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions..Opsearch 52 (2015), 156-167.
Reference: [2] Bhurjee, A. K., Panda, G.: Sufficient optimality conditions and duality theory for interval optimization problem..Ann. Oper. Res. 243 (2016), 335-348. 10.1007/s10479-014-1644-0
Reference: [3] Clarke, F. H.: Optimization and Nonsmooth Analysis..Wiley, New York 1983.
Reference: [4] Demyanov, V. F.: Convexification and Concavification of a Positively Homogeneous Function by the Same Family of Linear Functions..Report 3,208,802. Universita di Pisa, 1994.
Reference: [5] Giannessi, F., Mastroeni, G., Pellegrini, L.: On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation..In: Vector Variational Inequalities and Vector Equilibria (F. Giannessi, ed.). Nonconvex Optim. Appl. 38 (2000), 153-215. 10.1007/978-1-4613-0299-5_11
Reference: [6] Gong, X. H.: Optimality conditions for efficient solution to the vector equilibrium problems with constraints..Taiwanese J. Math. 16 (2012), 1453-1473.
Reference: [7] Gong, X. H.: Optimality conditions for vector equilibrium problems..J. Math. Anal. Appl. 342 (2008), 1455-1466.
Reference: [8] Gong, X. H.: Scalarization and optimality conditions for vector equilibrium problems..Nonlinear Analysis: Theory, Methods Appl. 73 (2010), 3598-3612.
Reference: [9] Ioffe, A. D.: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions..SIAM J. Control Optim. 17 (1979), 245-250.
Reference: [10] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems..Appl. Math. Comput.218 (2011), 4119-4127.
Reference: [11] Jayswal, A., Stancu-Minasian, I., Banerjee, J.: Optimality conditions and duality for interval-valued optimization problems using convexificators..Rendiconti del Circolo Matematico di Palermo 65 (2016), 17-32.
Reference: [12] Jeyakumar, V., Luc, D. T.: Nonsmooth calculus, minimality, and monotonicity of convexificators..J. Optim. Theory Appl. 101 (1999), 599-621.
Reference: [13] Jeyakumar, V., Luc, D. T.: Approximate Jacobian matrices for nonsmooth continuous maps and C$^1$-optimization..SIAM J. Control Optim. 36 (1998), 1815-1832.
Reference: [14] Luu, D. V.: Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications..J. Optim. Theory Appl. 171 (2016), 643-665.
Reference: [15] Luu, D. V.: Necessary and sufficient conditions for efficiency via convexificators..J. Optim. Theory Appl. 160 (2014), 510-526.
Reference: [16] Luu, D. V.: Convexificators and necessary conditions for efficiency..Optimization 63 (2014), 321-335.
Reference: [17] Luu, D. V., Hang, D. D.: On optimality conditions for vector variational inequalities..J. Math. Anal. Appl. 412 (2014), 792-804.
Reference: [18] Luu, D. V., Hang, D. D.: Efficient solutions and optimality conditions for vector equilibrium problems..Math. Methods Oper. Res. 79 (2014), 163-177.
Reference: [19] Mordukhovich, B. S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces..J. Convex Anal. 2 (1995) 211-228.
Reference: [20] Morgan, J., Romaniello, M.: Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities..J. Optim. Theory Appl. 130 (2006), 309-316.
Reference: [21] Ward, D. E., Lee, G. M.: On relations between vector optimization problems and vector variational inequalities..J. Optim. Theory Appl. 113 (2002), 583-596.
Reference: [22] Wu, H. C.: On interval-valued nonlinear programming problems..J. Math. Anal. Appl. 338 (2008), 299-316.
.

Files

Files Size Format View
Kybernetika_61-2025-5_7.pdf 525.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo