Previous |  Up |  Next

Article

Keywords:
Function spaces; Fourier analysis; dominating mixed smoothness; hyperbolic cross approximation; local means; atoms; wavelets; embeddings; traces; entropy numbers
Summary:
The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation with respect to hyperbolic crosses, embeddings and traces. We follow [42], [43], [44], [59], [63], [64], [70], and [94], [95], [96]. Partial results can be found also in [6], [7], [8], [37] and [48].
References:
[1] Adams R. A.: Reduced Sobolev inequalities. Canad. Math. Bull. 31 (1988), no. 2, 159–167. Zbl 0662.46036, MR 89f:46066. DOI 10.4153/CMB-1988-024-1 | MR 0942066 | Zbl 0662.46036
[2] Amanov T. I.: Representation and embedding theorems for the function spaces $S^{(r)}_{p\,\Theta }B(\R_n)$ and $S^{(r)}_{p^*\,\Theta }B(0\le x_j\le 2\pi $, $j=1,\dots ,n)$. (Russian) Trudy Mat. Inst. Steklov 77 (1965), 5–34. Zbl 0152.12701, MR 33 #1718. MR 0193498
[3] Amanov T. I.: Spaces of Differentiable Functions with Dominating Mixed Derivative. (Russian) Nauka Kazakh. SSR, Alma-Ata, 1976. MR0860038. MR 0860038
[4] Babenko K. I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Dokl. Akad. Nauk SSSR 132 (1960), 982–985; English transl. in Soviet Math. Dokl. 1 (1960), 672–675. Zbl 0102.05301, MR 22 #12342. MR 0121607 | Zbl 0102.05301
[5] Bagby R. J.: An extended inequality for the maximal function. Proc. Amer. Math. Soc. 48 (1975), 419–422. Zbl 0303.46028, MR 51 #6400. DOI 10.1090/S0002-9939-1975-0370171-X | MR 0370171 | Zbl 0303.46028
[6] Bazarkhanov D. B.: Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel spaces of functions of dominating mixed smoothness. (Russian) Trudy Mat. Inst. Steklov 243 (2003), 53–65; English transl. in Proc. Steklov Inst. Math. 243 (2003), 46–58. Zbl 1090.46025. MR 2049462
[7] Bazarkhanov D. B.: $\varphi $-transform characterization of the Nikol’skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness. East J. Approx. 10 (2004), no. 1–2, 119–131. Zbl 1113.46025, MR 2005c:46036. MR 2074903
[8] Bazarkhanov D. B.: Equivalent (quasi)norms for certain function spaces of generalized mixed smoothness. (Russian) Trudy Mat. Inst. Steklov 248 (2005), 26–39; English transl. in Proc. Steklov Inst. Math. 248 (2005), no. 1, 21–34. Zbl pre05181509, MR 2006d:46041. MR 2165912 | Zbl 1129.46023
[9] Bennett C., Sharpley R.: Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057,MR 89e:46001. MR 0928802 | Zbl 0647.46057
[10] Belinsky E. S.: Estimates of entropy numbers and Gaussian measures of functions with bounded mixed derivative. J. Approx. Theory 93 (1998), 114–127. Zbl 0904.41016, MR 2000c:41032. DOI 10.1006/jath.1997.3157 | MR 1612794
[11] Besov O. V., in V. P. Il,’ skii S. M. Nikol,’ : Integral Representations of Functions and Embedding Theorems. (Russian) Nauka, Moskva, 1975. Zbl 0352.46023, MR 55 #3776. MR 0430771
[12] Blozinski A. P.: Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Amer. Math. Soc. 263 (1981), no. 1, 149–167. Zbl 0462.46020, MR 81k:46023. DOI 10.1090/S0002-9947-1981-0590417-X | MR 0590417 | Zbl 0462.46020
[13] Brezis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differeantial Equations 5 (1980), no. 7, 773–789. Zbl 0437.35071, MR 81k:46028. MR 0579997 | Zbl 0437.35071
[14] Bugrov Y. S.: Approximation of a class of functions with dominant mixed derivative. (Russian) Mat. Sb. 64 (106) (1964), 410–418. Zbl 0135.34902, MR 29 #2587. MR 0165298
[15] Bungartz H.-J., Griebel M.: Sparse grids. Acta Numer. (2004), 147–269. MR 2007e:65102. MR 2249147 | Zbl 1122.65405
[16] Carl B.: Entropy numbers, $s$-numbers and eigenvalue problems. J. Funct. Anal. 41 (1981), no. 3, 290–306. Zbl 0466.41008, MR 82m:47015. DOI 10.1016/0022-1236(81)90076-8 | MR 0619953 | Zbl 0466.41008
[17] Carl B., Stephani I.: Entropy, Compactness and Approximation of Operators. Cambridge Tracts in Mathematics, 98. Cambridge Univ. Press, 1990. Zbl 0705.47017, MR 92e:47002. MR 1098497
[18] Daubechies I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. Zbl 0644.42026, MR 90m:42039. DOI 10.1002/cpa.3160410705 | MR 0951745 | Zbl 0644.42026
[19] Daubechies I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series Appl. Math. 61. SIAM, Philadelphia, 1992. Zbl 0776.42018, MR 93e:42045. MR 1162107 | Zbl 0776.42018
[20] DeVore R., Konyagin S. V., Temlyakov V. N.: Hyperbolic wavelet approximation. Constr. Approx. 14 (1998), no. 1, 1–26. MR 99d:42055. DOI 10.1007/s003659900060 | MR 1486387
[21] DeVore R., Lorentz G. G.: Constructive Approximation. Grundlehren derMathematischen Wissenschaften, 303. Springer, Berlin, 1993. Zbl 0797.41016,MR 95f:41001. DOI 10.1007/978-3-662-02888-9 | MR 1261635 | Zbl 0797.41016
[22] DeVore R., Petrushev P. P., Temlyakov V. N.: Multivariate trigonometric polynomial approximations with frequencies from the hyperbolic cross. Mat. Zametki 56 (1994), no. 3, 36–63; English transl. in Math. Notes 56 (1994), 900–918. Zbl 0839.42006, MR 96b:42001. MR 1309839 | Zbl 0839.42006
[23] Dung, Dinh: Approximation of functions of several variables on a torus by trigonometric polynomials. (Russian) Mat. Sb. (N.S.) 131(173) (1986), 251–271; English transl. in Math. USSR-Sb. 59 (1988), no. 1, 247–267. Zbl 0634.42005, MR 88h:42002. MR 0865938
[24] Dung, Dinh: Non-linear approximations using sets of finite cardinality or finite pseudodimension. J. Complexity 17 (2001), no. 2, 467–492. Zbl 0993.41013,MR 2002g:41029. DOI 10.1006/jcom.2001.0579 | MR 1843429
[25] Dung, Dinh: Asymptotic orders of optimal nonlinear approximations. East J. Approx. 7 (2001), no. 1, 55–76. Zbl 1085.41507, MR 2002c:41019. MR 1834156
[26] Donoho D. L., Vetterli M., DeVore R. A., Daubechies I.: Data compression and harmonic analysis. IEEE Trans. Inf. Theory 6 (1998), no. 6, 2435–2476. Zbl pre01365129, MR 99i:94028. MR 1658775 | Zbl 1125.94311
[27] Edmunds D. E., Triebel H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge Tracts in Mathematics, 120. Cambridge Univ. Press, 1996. Zbl 0865.46020, MR 97h:46045. MR 1410258 | Zbl 0865.46020
[28] Farkas W., Leopold H.-G.: Characterizations of function spaces with generalised smoothness. Ann. Mat. Pura Appl. 185 (2006), 1–62. DOI 10.1007/s10231-004-0110-z | MR 2179581
[29] Fefferman C., Stein E. M.: Some maximal inequalities. Amer. J. Math. 93 (1971), 107–115. Zbl 0222.26019, MR 44 #2026. DOI 10.2307/2373450 | MR 0284802 | Zbl 0222.26019
[30] Frazier M., Jawerth B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. Zbl 0551.46018, MR 87h:46083. DOI 10.1512/iumj.1985.34.34041 | MR 0808825 | Zbl 0551.46018
[31] Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), no. 1, 34–170. Zbl 0716.46031, MR 92a:46042. DOI 10.1016/0022-1236(90)90137-A | MR 1070037 | Zbl 0716.46031
[32] Frazier M., Jawerth B., Weiss G.: Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conf. Series Math. 79. AMS, Providence, 1991. Zbl 0757.42006, MR 92m:42021. MR 1107300 | Zbl 0757.42006
[33] dman M. L. Gol,’ : Covering methods for the description of general spaces of Besov type. (Russian) Trudy Mat. Inst. Steklov 156 (1980), 47–81. Zbl 0455.46035,MR 82i:46047.
[34] Griebel M., Oswald P., Schiekofer T.: Sparse grids for boundary integral equations. Numer. Math. 83 (1999), no. 2, 279–312. Zbl 0935.65131, MR 2000h:65195. DOI 10.1007/s002110050450 | MR 1712687 | Zbl 0935.65131
[35] Hansson K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45 (1979), no. 1, 77–102. Zbl 0437.31009, MR 81j:31007. MR 0567435 | Zbl 0437.31009
[36] Haroske D.: Envelopes and Sharp Imbeddings of Function Spaces. CRC Research Notes in Math., Boca Raton 2007. MR 2262450
[37] Hochmuth R.: A $\varphi $-transform result for spaces with dominating mixed smoothness properties. Results Math. 33 (1998), no. 1-2, 106–119. Zbl 0905.46017, MR 99g:42028. DOI 10.1007/BF03322075 | MR 1610139 | Zbl 0905.46017
[38] Kamont A.: On hyperbolic summation and hyperbolic moduli of smoothness. Constr. Approx. 12 (1996), no. 1, 111–125. Zbl 0857.41007, MR 97d:41008. DOI 10.1007/BF02432857 | MR 1389922 | Zbl 0857.41007
[39] König H.: Eigenvalue Distribution of Compact Operators. Operator Theory: Advances and Applications, 16. Birkhäuser Verlag, Basel, 1986. Zbl 0618.47013, MR 88j:47021. MR 0889455
[40] Kolyada V. I.: Rearrangement of functions and embedding of anisotropic spaces of Sobolev type. East J. Approx. 4 (1998), no. 2, 111–199. Zbl 0917.46019, MR 99g:46043a. MR 1638343 | Zbl 0917.46019
[41] Kolyada V. I.: Embeddings of fractional Sobolev spaces and estimates of Fourier transforms. (Russian) Mat. Sb. 192 (2001), no. 7, 51–72; English transl. in: Sb. Math. 192 (2001), no. 7, 979–1000. Zbl 1031.46040, MR 2002k:46080. MR 1861373
[42] Krbec M., Schmeisser H.-J.: Limiting imbeddings. The case of missing derivatives. Ricerche Mat. XLV (1996), 423–447. MR 1776418 | Zbl 0930.46029
[43] Krbec M., Schmeisser H.-J.: Imbeddings of Brézis-Wainger type. The case of missing derivatives. Proc. Roy. Soc. Edinburgh, Sect. A, Math. 131 (2001), no. 3, 667–700. Zbl 0985.46018, MR 2002f:46053. MR 1838506 | Zbl 0985.46018
[44] Krbec M., Schmeisser H.-J.: Critical imbeddings with multivariate rearrangements. Studia Math. 181 (2007), no. 3, 255–284. Zbl pre05175022. DOI 10.4064/sm181-3-4 | MR 2322578 | Zbl 1131.46026
[45] Lizorkin P. I.: Operators connected with fractional differentiation, and classes of differentiable functions. (Russian) Trudy Mat. Inst. Steklov 117 (1972), 212–243. Zbl 0282.46029, MR 51 #6395. MR 0370166
[46] Lizorkin P. I.: Properties of functions in the spaces $\Lambda ^r_{p\,\theta }$. (Russian) Trudy Mat. Inst. Steklov 131 (1974), 158–181; English transl. in Proc. Steklov Inst. Math. 131 (1974), 165–188. Zbl 0317.46029, MR 50 #14201. MR 0361756
[47] Lizorkin P. I., skii S. M. Nikol,’ : Classification of differentiable functions on the basis of spaces with dominating mixed smoothness. (Russian) Trudy Mat. Inst. Steklov 77 (1965), 143–167. Zbl 0165.47201, MR 33 #450. MR 0192223
[48] Lizorkin P. I., skii S. M. Nikol,’ : Function spaces of mixed smoothness from the decomposition point of view. (Russian) Trudy Mat. Inst. Steklov 187 (1989), 143–161; English transl. in Proc. Steklov Inst. Math. 1990, no. 3, 163–184. Zbl 0707.46025; MR 91h:46062. MR 1006449
[49] skaya N. S. Nikol,’ : Approximation of differentiable functions of several variables by Fourier sums in the $L_p$-metric. (Russian) Sbirsk. Mat. Zh. 15 (1974), 395–412. MR 0336221
[50] skii S. M. Nikol,’ : Functions with a dominating mixed derivative satisfying a multiple Hölder condition. (Russian) Sibirsk. Mat. Zh. 6 (1963), 1342–1364. MR 28 #3322. MR 0160108
[51] skii S. M. Nikol,’ : Approximation of Functions of Several Variables and Imbedding Theorems. (Russian) Sec. ed., rev. and suppl. Nauka, Moskva, 1977. Zbl 0496.46020, MR 81f:46046. English transl.: Die Grundlehren der Mathematischen Wissenschaften, 205. Springer, Berlin, 1975. Zbl 0307.46024, MR 51 #11073. MR 0506247
[52] Nitsche P.-A.: Sparse tensor product approximation of elliptic problems. Thesis. ETH Zürich, 2004.
[53] Nitsche P.-A.: Sparse approximation of singularity functions. Constr. Approx. 21 (2005), no. 1, 63–81. Zbl 1073.65118, MR 2005h:41038. MR 2105391 | Zbl 1073.65118
[54] Peetre J.: Remarques sur les espaces de Besov. Le cas $0. (Freanch) C. R. Acad. Sci. Paris, Sér. A-B 277 (1973), 947–949. Zbl 0265.46036, MR 49 #3532. MR 0338768 | Zbl 0265.46036
[55] Peetre J.: On spaces of Triebel-Lizorkin type. Ark. Mat. 13 (1975), 123–130. Zbl 0302.46021, MR 52 #1294. DOI 10.1007/BF02386201 | MR 0380394 | Zbl 0302.46021
[56] Peetre J.: New Thoughts on Besov Spaces. Duke Univ. Math. Series. Mathematics Department, Duke University, Durham, 1976. Zbl 0356.46038, MR 57 #1108. MR 0461123 | Zbl 0356.46038
[57] Pietsch A.: Eigenvalues and $s$-Numbers. Cambridge Studies in Advanced mathematics, 13. Cambridge Univ. Press, 1987. Zbl 0615.47019, MR 88j:47022b. MR 0890520 | Zbl 0615.47019
[58] Pohozaev S.: On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. (Russian) Dokl. Akad. Nauk SSSR 165 (1965), 36–39; English transl. in Soviet Math. Dokl. 6, 1408–1411 (1965). Zbl 0141.30202, MR 33 #411. MR 0192184
[59] Fernández M. C. Rodriguez: Über die Spur von Funktionen mit dominierenden gemischten Glattheitseigenschaften auf der Diagonale. Thesis, Jena 1997.
[60] Schmeisser H.-J.: Über Räume von Funktionen und Distributionen mit dominierenden gemischten Glattheitseigenschaften vom Besov-Triebel-Lizorkin Typ. Habilitation Thesis, Jena, 1982.
[61] Schmeisser H.-J.: Imbedding theorems for spaces of functions with dominating mixed smoothness properties of Besov-Triebel-Lizorkin type. Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Natur. Reihe 31 (1982), no. 4, 635–645. MR 0682553 | Zbl 0508.46025
[62] Schmeisser H.-J.: Maximal inequalities and Fourier multipliers for spaces with mixed quasi-norms. Applications. Z. Anal. Annwend. 3 (1984), 153–166. Zbl 0508.46025, MR 84d:46041. MR 0742466
[63] Schmeisser H.-J., Triebel H.: Topics in Fourier Analysis and Function Spaces. Mathematik und ihre Anwendungen in Physik und Technik, 42. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. Zbl 0661.46024, MR 88k:42015a. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1987. Zbl 0661.46025, MR 88k:42015a. MR 0891189 | Zbl 0661.46025
[64] Schmeisser H.-J., Sickel W.: Spaces of functions of mixed smoothness and approximation from hyperbolic crosses. J. Approx. Theory 128 (2004), no. 2, 115–150. Zbl 1045.41009, MR 2005f:41035. MR 2068694 | Zbl 1045.41009
[65] Sickel W.: Approximate recovery of functions and Besov spaces of dominating mixed smoothness. In: Constructive Theory of Functions (Bojanov, B. D., ed.). DARBA, 2002, 404–411. Zbl 1082.42004, MR 2005g:41016. MR 2092371 | Zbl 1082.42004
[66] Sickel W.: Approximation from sparse grids and function spaces of dominating mixed smoothness. In: Approximation and probability. Papers of the conference held on the occasion of the 70th anniversary of Prof. Zbigniew Ciesielski, Bȩdlewo, Poland, September 20–24, 2004. (T. Figiel, et al., eds.). Banach Center Publications 72 (2006), 271–283. Zbl 1110.41009. MR 2325751 | Zbl 1110.41009
[67] Sickel W., Sprengel F.: Interpolation on sparse grids and tensor products of Nikol’skij-Besov spaces. J. Comp. Anal. Appl. 1 (1999), no. 3, 263–288. Zbl 0945.41002, MR 2001c:41024. MR 1771491 | Zbl 0945.41002
[68] Sickel W., Triebel H.: Hölder inequalities and sharp embeddings in function spaces of $B^s_{p\,q}$ and $F^s_{p\,q}$ type. Z. Anal. Anwend. 14 (1995), no. 1, 105–140. Zbl 0820.46030, MR 96h:46042. MR 1327495 | Zbl 0820.46030
[69] Sickel W., Ullrich T.: Smolyak’s Algorithm, Sampling on Sparse Grids and Function Spaces with Domnating Mixed Smoothness. Jenaer Schriften Math. u. Inf., Math/Inf/14/06, 1–57.
[70] Sickel W., Vybíral J.: Traces of functions with a dominating mixed derivative in $\R^3$. Preprint, Jena 2005.
[71] Smolyak S. A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. (Russian) Dokl. Akad. Nauk. SSSR 148 (1963), 1042–1045. Zbl 0202.39901. MR 0147825 | Zbl 0202.39901
[72] Stöckert B., Triebel H.: Decomposition methods for function spaces of $B^s_{p,q}$ type and $F^s_{p,q}$ type. Math. Nachr. 89 (1979), 247–267. Zbl 0421.46026, MR 81e:46023. DOI 10.1002/mana.19790890121 | MR 0546886
[73] Strichartz R. S.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16 (1967), 1031–1060. Zbl 0145.38301, MR 35 #5927. MR 0215084 | Zbl 0145.38301
[74] Strömberg J. O.: Computation with wavelets in higher dimensions. Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math. 1998, Extra Vol. III, 523–532. Zbl 0907.42023, MR 99j:65250. MR 1648185 | Zbl 0907.42023
[75] Temlyakov V. N.: Approximation of periodic functions of several variables with a bounded mixed derivative. (Russian) Trudy Mat. Inst. Steklov 156 (1980), 233–260. Zbl 0446.42002, MR 83b:41018. MR 0622235
[76] Temlyakov V. N.: Approximate recovery of periodic functions of several variables. (Russian) Mat. Sb. (N.S.) 128(170) (1985), no. 2, 256–268. Zbl 0635.46025,MR 88b:42008. MR 0809488 | Zbl 0635.46025
[77] Temlyakov V. N.: Approximation of functions with bounded mixed derivative. (Russian) Trudy Mat. Inst. Steklov 178 (1986), 1–112; English transl. in Proceedings of the Steklov Institute of Mathematics, 178. Providence, RI: American Mathematical Society (AMS). Zbl 0668.41024, MR 87j:42006. MR 0847439 | Zbl 0625.41028
[78] Temlyakov V. N.: Estimates of asymptotic characteristics on functional classes with bounded mixed derivative or difference. (Russian) Trudy Mat. Inst. Steklov 189 (1989), 138–168; English transl. in Proc. Steklov Inst. 189 (1990), 161–197.Zbl 0719.46021, MR 90g:41037. MR 0999814
[79] Temlyakov V. N.: Approximation of Periodic Functions. Computational Mathematics and Analysis Series. Nova Science, New York, 1993. Zbl 0899.41001, MR 96j:41001. MR 1373654 | Zbl 0899.41001
[80] Tikhomirov V. M.: Approximation theory. In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 14, 103–260; English transl. in Analysis. II. Convex analysis and approximation theory, Encycl. Math. Sci. 14, 93–243, Springer, Berlin, 1990. Zbl 0780.41001. MR 0915774 | Zbl 0728.41016
[81] Triebel H.: Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation. Ark. Mat. 11 (1973), 13–64. Zbl 0255.46026, MR 50 #981. DOI 10.1007/BF02388506 | MR 0348483 | Zbl 0255.46026
[82] Triebel H.: Fourier Analysis and Function Spaces. Selected topics. Teubner Texte Math. 7, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1977. Zbl 0345.42003, MR 58 #12339. MR 0493311 | Zbl 0345.42003
[83] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. Sec. rev. and enlarged ed. Barth, Heidelberg, 1995. Zbl 0830.46028, MR 96f:46001. MR 1328645 | Zbl 0387.46033
[84] Triebel H.: Spaces of Besov-Hardy-Sobolev type. Teubner Texte Math. 15, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978. Zbl 0408.46024, MR 82g:46071. MR 0581907 | Zbl 0408.46024
[85] Triebel H.: Theory of Function Spaces. Mathematik und ihre Anwendungen in Physik und Technik, 38. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1983. Zbl 0546.46028, MR 85k:46020. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. Zbl 0546.46027, MR 86j:46026. MR 0781540 | Zbl 0546.46028
[86] Triebel H.: A diagonal embedding theorem for function spaces with dominating mixed smoothness properties. Approximation and function spaces. Proc. 27th Semester, Warsaw. Banach Center Publ. 22. PWN, Warsaw, 1989, 475–486. Zbl 0707.46020, MR 92f:46044. MR 1097217 | Zbl 0707.46020
[87] Triebel H.: Theory of Function Spaces II. Monographs in Mathematics. 84. Birkhäuser Verlag, Basel, 1992. Zbl 0763.46025, MR 93f:46029. MR 1163193 | Zbl 0763.46025
[88] Triebel H.: Fractals and Spectra. Related to Fourier analysis and function spaces. Monographs in Mathematics, 91. Birkäuser Verlag, Basel, 1997. Zbl 0898.46030, MR 99b:46048. MR 1484417 | Zbl 0898.46030
[89] Triebel H.: The Structure of Functions. Monographs in Mathematics. 97. Birkhäuser Verlag, Basel, 2001. Zbl 0984.46021, MR 2002k:46087. MR 1851996 | Zbl 0984.46021
[90] Triebel H.: Theory of Function Spaces III. Monographs in Mathematics 100. Birkäuser Verlag, Basel, 2006. Zbl 1104.46001, MR MR2250142. MR 2250142 | Zbl 1104.46001
[91] Trudinger N.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–483. Zbl 0163.36402, MR 35 #7121. MR 0216286 | Zbl 0163.36402
[92] Ullrich T.: Function spaces with dominating mixed smoothness. Characterization by differences. Jenaer Schriften Math. u. Inf., Math/Inf/05/06, 1–50.
[93] Ullrich T.: Smolyak’s algorithm, sampling on sparse grids and function spaces with domnating mixed smoothness. Jenaer Schriften Math. u. Inf., Math/Inf/15/06, 1–36.
[94] Vybíral J.: Characterization of function spaces with dominating mixed smoothness properties. Jenaer Schriften Math. u. Inf., Math/Inf/15/03, 1–42.
[95] Vybíral J.: A diagonal embedding theorem for function spaces with dominating mixed smoothness. Funct. Approx. Comment. Math. bf33 (2005), 101–120. Zbl pre05135207, MR MR2274153. MR 2274153 | Zbl 1186.46033
[96] Vybíral J.: Function spaces with dominating mixed smoothness. Dissertationes Math. 436 (2006), 1–73. Zbl 1101.46023, MR 2007d:46030. DOI 10.4064/dm436-0-1 | MR 2231066
[97] Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004), no. 4, 731–759. Zbl 1062.35100, 2005j:35032. DOI 10.1007/s00211-003-0498-1 | MR 2099319 | Zbl 1062.35100
[98] Yserentant H.: Sparse grid spaces for the numerical solution of the Schrödinger equation. Numer. Math. 101 (2005), no. 2, 381–389. Zbl 1084.65125, MR 2006h:35043. DOI 10.1007/s00211-005-0581-x | MR 2195349
[99] Yudovich V. I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138 (1961), 805–808; English transl. in Soviet Math. Doklady 2 (1961), 746–749. Zbl 0144.14501. MR 0140822 | Zbl 0144.14501
[100] Ziemer W. P.: Weakly Differentiable Functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer, New York, 1989. Zbl 0692.46022, MR 91e:46046. DOI 10.1007/978-1-4612-1015-3_5 | MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo