Previous |  Up |  Next

Article

Title: Recent developments in the theory of function spaces with dominating mixed smoothness (English)
Author: Schmeisser, Hans-Jürgen
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 8
Issue: 2006
Year:
Pages: 145-204
.
Category: math
.
Summary: The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation with respect to hyperbolic crosses, embeddings and traces. We follow [42], [43], [44], [59], [63], [64], [70], and [94], [95], [96]. Partial results can be found also in [6], [7], [8], [37] and [48]. (English)
Keyword: Function spaces
Keyword: Fourier analysis
Keyword: dominating mixed smoothness
Keyword: hyperbolic cross approximation
Keyword: local means
Keyword: atoms
Keyword: wavelets
Keyword: embeddings
Keyword: traces
Keyword: entropy numbers
MSC: 41A46
MSC: 42B25
MSC: 42B35
MSC: 42C40
MSC: 46E35
MSC: 47B06
MSC: 65T60
.
Date available: 2009-10-08T09:52:13Z
Last updated: 2013-10-18
Stable URL: http://hdl.handle.net/10338.dmlcz/702494
.
Reference: [1] Adams R. A.: Reduced Sobolev inequalities.Canad. Math. Bull. 31 (1988), no. 2, 159–167. Zbl 0662.46036, MR 89f:46066. Zbl 0662.46036, MR 0942066, 10.4153/CMB-1988-024-1
Reference: [2] Amanov T. I.: Representation and embedding theorems for the function spaces $S^{(r)}_{p\,\Theta }B(\R_n)$ and $S^{(r)}_{p^*\,\Theta }B(0\le x_j\le 2\pi $, $j=1,\dots ,n)$.(Russian) Trudy Mat. Inst. Steklov 77 (1965), 5–34. Zbl 0152.12701, MR 33 #1718. MR 0193498
Reference: [3] Amanov T. I.: Spaces of Differentiable Functions with Dominating Mixed Derivative.(Russian) Nauka Kazakh. SSR, Alma-Ata, 1976. MR0860038. MR 0860038
Reference: [4] Babenko K. I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables.Dokl. Akad. Nauk SSSR 132 (1960), 982–985; English transl. in Soviet Math. Dokl. 1 (1960), 672–675. Zbl 0102.05301, MR 22 #12342. Zbl 0102.05301, MR 0121607
Reference: [5] Bagby R. J.: An extended inequality for the maximal function.Proc. Amer. Math. Soc. 48 (1975), 419–422. Zbl 0303.46028, MR 51 #6400. Zbl 0303.46028, MR 0370171, 10.1090/S0002-9939-1975-0370171-X
Reference: [6] Bazarkhanov D. B.: Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel spaces of functions of dominating mixed smoothness.(Russian) Trudy Mat. Inst. Steklov 243 (2003), 53–65; English transl. in Proc. Steklov Inst. Math. 243 (2003), 46–58. Zbl 1090.46025. MR 2049462
Reference: [7] Bazarkhanov D. B.: $\varphi $-transform characterization of the Nikol’skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness.East J. Approx. 10 (2004), no. 1–2, 119–131. Zbl 1113.46025, MR 2005c:46036. MR 2074903
Reference: [8] Bazarkhanov D. B.: Equivalent (quasi)norms for certain function spaces of generalized mixed smoothness.(Russian) Trudy Mat. Inst. Steklov 248 (2005), 26–39; English transl. in Proc. Steklov Inst. Math. 248 (2005), no. 1, 21–34. Zbl pre05181509, MR 2006d:46041. Zbl 1129.46023, MR 2165912
Reference: [9] Bennett C., Sharpley R.: Interpolation of Operators.Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057,MR 89e:46001. Zbl 0647.46057, MR 0928802
Reference: [10] Belinsky E. S.: Estimates of entropy numbers and Gaussian measures of functions with bounded mixed derivative.J. Approx. Theory 93 (1998), 114–127. Zbl 0904.41016, MR 2000c:41032. MR 1612794, 10.1006/jath.1997.3157
Reference: [11] Besov O. V., in V. P. Il,’ skii S. M. Nikol,’ : Integral Representations of Functions and Embedding Theorems.(Russian) Nauka, Moskva, 1975. Zbl 0352.46023, MR 55 #3776. MR 0430771
Reference: [12] Blozinski A. P.: Multivariate rearrangements and Banach function spaces with mixed norms.Trans. Amer. Math. Soc. 263 (1981), no. 1, 149–167. Zbl 0462.46020, MR 81k:46023. Zbl 0462.46020, MR 0590417, 10.1090/S0002-9947-1981-0590417-X
Reference: [13] Brezis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities.Comm. Partial Differeantial Equations 5 (1980), no. 7, 773–789. Zbl 0437.35071, MR 81k:46028. Zbl 0437.35071, MR 0579997
Reference: [14] Bugrov Y. S.: Approximation of a class of functions with dominant mixed derivative.(Russian) Mat. Sb. 64 (106) (1964), 410–418. Zbl 0135.34902, MR 29 #2587. MR 0165298
Reference: [15] Bungartz H.-J., Griebel M.: Sparse grids.Acta Numer. (2004), 147–269. MR 2007e:65102. Zbl 1122.65405, MR 2249147
Reference: [16] Carl B.: Entropy numbers, $s$-numbers and eigenvalue problems.J. Funct. Anal. 41 (1981), no. 3, 290–306. Zbl 0466.41008, MR 82m:47015. Zbl 0466.41008, MR 0619953, 10.1016/0022-1236(81)90076-8
Reference: [17] Carl B., Stephani I.: Entropy, Compactness and Approximation of Operators.Cambridge Tracts in Mathematics, 98. Cambridge Univ. Press, 1990. Zbl 0705.47017, MR 92e:47002. MR 1098497
Reference: [18] Daubechies I.: Orthonormal bases of compactly supported wavelets.Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. Zbl 0644.42026, MR 90m:42039. Zbl 0644.42026, MR 0951745, 10.1002/cpa.3160410705
Reference: [19] Daubechies I.: Ten Lectures on Wavelets.CBMS-NSF Regional Conf. Series Appl. Math. 61. SIAM, Philadelphia, 1992. Zbl 0776.42018, MR 93e:42045. Zbl 0776.42018, MR 1162107
Reference: [20] DeVore R., Konyagin S. V., Temlyakov V. N.: Hyperbolic wavelet approximation.Constr. Approx. 14 (1998), no. 1, 1–26. MR 99d:42055. MR 1486387, 10.1007/s003659900060
Reference: [21] DeVore R., Lorentz G. G.: Constructive Approximation.Grundlehren derMathematischen Wissenschaften, 303. Springer, Berlin, 1993. Zbl 0797.41016,MR 95f:41001. Zbl 0797.41016, MR 1261635, 10.1007/978-3-662-02888-9
Reference: [22] DeVore R., Petrushev P. P., Temlyakov V. N.: Multivariate trigonometric polynomial approximations with frequencies from the hyperbolic cross.Mat. Zametki 56 (1994), no. 3, 36–63; English transl. in Math. Notes 56 (1994), 900–918. Zbl 0839.42006, MR 96b:42001. Zbl 0839.42006, MR 1309839
Reference: [23] Dung, Dinh: Approximation of functions of several variables on a torus by trigonometric polynomials.(Russian) Mat. Sb. (N.S.) 131(173) (1986), 251–271; English transl. in Math. USSR-Sb. 59 (1988), no. 1, 247–267. Zbl 0634.42005, MR 88h:42002. MR 0865938
Reference: [24] Dung, Dinh: Non-linear approximations using sets of finite cardinality or finite pseudodimension.J. Complexity 17 (2001), no. 2, 467–492. Zbl 0993.41013,MR 2002g:41029. MR 1843429, 10.1006/jcom.2001.0579
Reference: [25] Dung, Dinh: Asymptotic orders of optimal nonlinear approximations.East J. Approx. 7 (2001), no. 1, 55–76. Zbl 1085.41507, MR 2002c:41019. MR 1834156
Reference: [26] Donoho D. L., Vetterli M., DeVore R. A., Daubechies I.: Data compression and harmonic analysis.IEEE Trans. Inf. Theory 6 (1998), no. 6, 2435–2476. Zbl pre01365129, MR 99i:94028. Zbl 1125.94311, MR 1658775
Reference: [27] Edmunds D. E., Triebel H.: Function Spaces, Entropy Numbers, Differential Operators.Cambridge Tracts in Mathematics, 120. Cambridge Univ. Press, 1996. Zbl 0865.46020, MR 97h:46045. Zbl 0865.46020, MR 1410258
Reference: [28] Farkas W., Leopold H.-G.: Characterizations of function spaces with generalised smoothness.Ann. Mat. Pura Appl. 185 (2006), 1–62. MR 2179581, 10.1007/s10231-004-0110-z
Reference: [29] Fefferman C., Stein E. M.: Some maximal inequalities.Amer. J. Math. 93 (1971), 107–115. Zbl 0222.26019, MR 44 #2026. Zbl 0222.26019, MR 0284802, 10.2307/2373450
Reference: [30] Frazier M., Jawerth B.: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. Zbl 0551.46018, MR 87h:46083. Zbl 0551.46018, MR 0808825, 10.1512/iumj.1985.34.34041
Reference: [31] Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), no. 1, 34–170. Zbl 0716.46031, MR 92a:46042. Zbl 0716.46031, MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [32] Frazier M., Jawerth B., Weiss G.: Littlewood-Paley Theory and the Study of Function Spaces.CBMS Regional Conf. Series Math. 79. AMS, Providence, 1991. Zbl 0757.42006, MR 92m:42021. Zbl 0757.42006, MR 1107300
Reference: [33] dman M. L. Gol,’ : Covering methods for the description of general spaces of Besov type.(Russian) Trudy Mat. Inst. Steklov 156 (1980), 47–81. Zbl 0455.46035,MR 82i:46047.
Reference: [34] Griebel M., Oswald P., Schiekofer T.: Sparse grids for boundary integral equations.Numer. Math. 83 (1999), no. 2, 279–312. Zbl 0935.65131, MR 2000h:65195. Zbl 0935.65131, MR 1712687, 10.1007/s002110050450
Reference: [35] Hansson K.: Imbedding theorems of Sobolev type in potential theory.Math. Scand. 45 (1979), no. 1, 77–102. Zbl 0437.31009, MR 81j:31007. Zbl 0437.31009, MR 0567435
Reference: [36] Haroske D.: Envelopes and Sharp Imbeddings of Function Spaces.CRC Research Notes in Math., Boca Raton 2007. MR 2262450
Reference: [37] Hochmuth R.: A $\varphi $-transform result for spaces with dominating mixed smoothness properties.Results Math. 33 (1998), no. 1-2, 106–119. Zbl 0905.46017, MR 99g:42028. Zbl 0905.46017, MR 1610139, 10.1007/BF03322075
Reference: [38] Kamont A.: On hyperbolic summation and hyperbolic moduli of smoothness.Constr. Approx. 12 (1996), no. 1, 111–125. Zbl 0857.41007, MR 97d:41008. Zbl 0857.41007, MR 1389922, 10.1007/BF02432857
Reference: [39] König H.: Eigenvalue Distribution of Compact Operators.Operator Theory: Advances and Applications, 16. Birkhäuser Verlag, Basel, 1986. Zbl 0618.47013, MR 88j:47021. MR 0889455
Reference: [40] Kolyada V. I.: Rearrangement of functions and embedding of anisotropic spaces of Sobolev type.East J. Approx. 4 (1998), no. 2, 111–199. Zbl 0917.46019, MR 99g:46043a. Zbl 0917.46019, MR 1638343
Reference: [41] Kolyada V. I.: Embeddings of fractional Sobolev spaces and estimates of Fourier transforms.(Russian) Mat. Sb. 192 (2001), no. 7, 51–72; English transl. in: Sb. Math. 192 (2001), no. 7, 979–1000. Zbl 1031.46040, MR 2002k:46080. MR 1861373
Reference: [42] Krbec M., Schmeisser H.-J.: Limiting imbeddings. The case of missing derivatives.Ricerche Mat. XLV (1996), 423–447. Zbl 0930.46029, MR 1776418
Reference: [43] Krbec M., Schmeisser H.-J.: Imbeddings of Brézis-Wainger type. The case of missing derivatives.Proc. Roy. Soc. Edinburgh, Sect. A, Math. 131 (2001), no. 3, 667–700. Zbl 0985.46018, MR 2002f:46053. Zbl 0985.46018, MR 1838506
Reference: [44] Krbec M., Schmeisser H.-J.: Critical imbeddings with multivariate rearrangements.Studia Math. 181 (2007), no. 3, 255–284. Zbl pre05175022. Zbl 1131.46026, MR 2322578, 10.4064/sm181-3-4
Reference: [45] Lizorkin P. I.: Operators connected with fractional differentiation, and classes of differentiable functions.(Russian) Trudy Mat. Inst. Steklov 117 (1972), 212–243. Zbl 0282.46029, MR 51 #6395. MR 0370166
Reference: [46] Lizorkin P. I.: Properties of functions in the spaces $\Lambda ^r_{p\,\theta }$.(Russian) Trudy Mat. Inst. Steklov 131 (1974), 158–181; English transl. in Proc. Steklov Inst. Math. 131 (1974), 165–188. Zbl 0317.46029, MR 50 #14201. MR 0361756
Reference: [47] Lizorkin P. I., skii S. M. Nikol,’ : Classification of differentiable functions on the basis of spaces with dominating mixed smoothness.(Russian) Trudy Mat. Inst. Steklov 77 (1965), 143–167. Zbl 0165.47201, MR 33 #450. MR 0192223
Reference: [48] Lizorkin P. I., skii S. M. Nikol,’ : Function spaces of mixed smoothness from the decomposition point of view.(Russian) Trudy Mat. Inst. Steklov 187 (1989), 143–161; English transl. in Proc. Steklov Inst. Math. 1990, no. 3, 163–184. Zbl 0707.46025; MR 91h:46062. MR 1006449
Reference: [49] skaya N. S. Nikol,’ : Approximation of differentiable functions of several variables by Fourier sums in the $L_p$-metric.(Russian) Sbirsk. Mat. Zh. 15 (1974), 395–412. MR 0336221
Reference: [50] skii S. M. Nikol,’ : Functions with a dominating mixed derivative satisfying a multiple Hölder condition.(Russian) Sibirsk. Mat. Zh. 6 (1963), 1342–1364. MR 28 #3322. MR 0160108
Reference: [51] skii S. M. Nikol,’ : Approximation of Functions of Several Variables and Imbedding Theorems.(Russian) Sec. ed., rev. and suppl. Nauka, Moskva, 1977. Zbl 0496.46020, MR 81f:46046. English transl.: Die Grundlehren der Mathematischen Wissenschaften, 205. Springer, Berlin, 1975. Zbl 0307.46024, MR 51 #11073. MR 0506247
Reference: [52] Nitsche P.-A.: Sparse tensor product approximation of elliptic problems.Thesis. ETH Zürich, 2004.
Reference: [53] Nitsche P.-A.: Sparse approximation of singularity functions.Constr. Approx. 21 (2005), no. 1, 63–81. Zbl 1073.65118, MR 2005h:41038. Zbl 1073.65118, MR 2105391
Reference: [54] Peetre J.: Remarques sur les espaces de Besov. Le cas $0<p<1$.(Freanch) C. R. Acad. Sci. Paris, Sér. A-B 277 (1973), 947–949. Zbl 0265.46036, MR 49 #3532. Zbl 0265.46036, MR 0338768
Reference: [55] Peetre J.: On spaces of Triebel-Lizorkin type.Ark. Mat. 13 (1975), 123–130. Zbl 0302.46021, MR 52 #1294. Zbl 0302.46021, MR 0380394, 10.1007/BF02386201
Reference: [56] Peetre J.: New Thoughts on Besov Spaces.Duke Univ. Math. Series. Mathematics Department, Duke University, Durham, 1976. Zbl 0356.46038, MR 57 #1108. Zbl 0356.46038, MR 0461123
Reference: [57] Pietsch A.: Eigenvalues and $s$-Numbers.Cambridge Studies in Advanced mathematics, 13. Cambridge Univ. Press, 1987. Zbl 0615.47019, MR 88j:47022b. Zbl 0615.47019, MR 0890520
Reference: [58] Pohozaev S.: On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.(Russian) Dokl. Akad. Nauk SSSR 165 (1965), 36–39; English transl. in Soviet Math. Dokl. 6, 1408–1411 (1965). Zbl 0141.30202, MR 33 #411. MR 0192184
Reference: [59] Fernández M. C. Rodriguez: Über die Spur von Funktionen mit dominierenden gemischten Glattheitseigenschaften auf der Diagonale.Thesis, Jena 1997.
Reference: [60] Schmeisser H.-J.: Über Räume von Funktionen und Distributionen mit dominierenden gemischten Glattheitseigenschaften vom Besov-Triebel-Lizorkin Typ.Habilitation Thesis, Jena, 1982.
Reference: [61] Schmeisser H.-J.: Imbedding theorems for spaces of functions with dominating mixed smoothness properties of Besov-Triebel-Lizorkin type.Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Natur. Reihe 31 (1982), no. 4, 635–645. Zbl 0508.46025, MR 0682553
Reference: [62] Schmeisser H.-J.: Maximal inequalities and Fourier multipliers for spaces with mixed quasi-norms. Applications.Z. Anal. Annwend. 3 (1984), 153–166. Zbl 0508.46025, MR 84d:46041. MR 0742466
Reference: [63] Schmeisser H.-J., Triebel H.: Topics in Fourier Analysis and Function Spaces.Mathematik und ihre Anwendungen in Physik und Technik, 42. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. Zbl 0661.46024, MR 88k:42015a. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1987. Zbl 0661.46025, MR 88k:42015a. Zbl 0661.46025, MR 0891189
Reference: [64] Schmeisser H.-J., Sickel W.: Spaces of functions of mixed smoothness and approximation from hyperbolic crosses.J. Approx. Theory 128 (2004), no. 2, 115–150. Zbl 1045.41009, MR 2005f:41035. Zbl 1045.41009, MR 2068694
Reference: [65] Sickel W.: Approximate recovery of functions and Besov spaces of dominating mixed smoothness.In: Constructive Theory of Functions (Bojanov, B. D., ed.). DARBA, 2002, 404–411. Zbl 1082.42004, MR 2005g:41016. Zbl 1082.42004, MR 2092371
Reference: [66] Sickel W.: Approximation from sparse grids and function spaces of dominating mixed smoothness.In: Approximation and probability. Papers of the conference held on the occasion of the 70th anniversary of Prof. Zbigniew Ciesielski, Bȩdlewo, Poland, September 20–24, 2004. (T. Figiel, et al., eds.). Banach Center Publications 72 (2006), 271–283. Zbl 1110.41009. Zbl 1110.41009, MR 2325751
Reference: [67] Sickel W., Sprengel F.: Interpolation on sparse grids and tensor products of Nikol’skij-Besov spaces.J. Comp. Anal. Appl. 1 (1999), no. 3, 263–288. Zbl 0945.41002, MR 2001c:41024. Zbl 0945.41002, MR 1771491
Reference: [68] Sickel W., Triebel H.: Hölder inequalities and sharp embeddings in function spaces of $B^s_{p\,q}$ and $F^s_{p\,q}$ type.Z. Anal. Anwend. 14 (1995), no. 1, 105–140. Zbl 0820.46030, MR 96h:46042. Zbl 0820.46030, MR 1327495
Reference: [69] Sickel W., Ullrich T.: Smolyak’s Algorithm, Sampling on Sparse Grids and Function Spaces with Domnating Mixed Smoothness.Jenaer Schriften Math. u. Inf., Math/Inf/14/06, 1–57.
Reference: [70] Sickel W., Vybíral J.: Traces of functions with a dominating mixed derivative in $\R^3$.Preprint, Jena 2005.
Reference: [71] Smolyak S. A.: Quadrature and interpolation formulas for tensor products of certain classes of functions.(Russian) Dokl. Akad. Nauk. SSSR 148 (1963), 1042–1045. Zbl 0202.39901. Zbl 0202.39901, MR 0147825
Reference: [72] Stöckert B., Triebel H.: Decomposition methods for function spaces of $B^s_{p,q}$ type and $F^s_{p,q}$ type.Math. Nachr. 89 (1979), 247–267. Zbl 0421.46026, MR 81e:46023. MR 0546886, 10.1002/mana.19790890121
Reference: [73] Strichartz R. S.: Multipliers on fractional Sobolev spaces.J. Math. Mech. 16 (1967), 1031–1060. Zbl 0145.38301, MR 35 #5927. Zbl 0145.38301, MR 0215084
Reference: [74] Strömberg J. O.: Computation with wavelets in higher dimensions.Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math. 1998, Extra Vol. III, 523–532. Zbl 0907.42023, MR 99j:65250. Zbl 0907.42023, MR 1648185
Reference: [75] Temlyakov V. N.: Approximation of periodic functions of several variables with a bounded mixed derivative.(Russian) Trudy Mat. Inst. Steklov 156 (1980), 233–260. Zbl 0446.42002, MR 83b:41018. MR 0622235
Reference: [76] Temlyakov V. N.: Approximate recovery of periodic functions of several variables.(Russian) Mat. Sb. (N.S.) 128(170) (1985), no. 2, 256–268. Zbl 0635.46025,MR 88b:42008. Zbl 0635.46025, MR 0809488
Reference: [77] Temlyakov V. N.: Approximation of functions with bounded mixed derivative.(Russian) Trudy Mat. Inst. Steklov 178 (1986), 1–112; English transl. in Proceedings of the Steklov Institute of Mathematics, 178. Providence, RI: American Mathematical Society (AMS). Zbl 0668.41024, MR 87j:42006. Zbl 0625.41028, MR 0847439
Reference: [78] Temlyakov V. N.: Estimates of asymptotic characteristics on functional classes with bounded mixed derivative or difference.(Russian) Trudy Mat. Inst. Steklov 189 (1989), 138–168; English transl. in Proc. Steklov Inst. 189 (1990), 161–197.Zbl 0719.46021, MR 90g:41037. MR 0999814
Reference: [79] Temlyakov V. N.: Approximation of Periodic Functions.Computational Mathematics and Analysis Series. Nova Science, New York, 1993. Zbl 0899.41001, MR 96j:41001. Zbl 0899.41001, MR 1373654
Reference: [80] Tikhomirov V. M.: Approximation theory.In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 14, 103–260; English transl. in Analysis. II. Convex analysis and approximation theory, Encycl. Math. Sci. 14, 93–243, Springer, Berlin, 1990. Zbl 0780.41001. Zbl 0728.41016, MR 0915774
Reference: [81] Triebel H.: Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation.Ark. Mat. 11 (1973), 13–64. Zbl 0255.46026, MR 50 #981. Zbl 0255.46026, MR 0348483, 10.1007/BF02388506
Reference: [82] Triebel H.: Fourier Analysis and Function Spaces. Selected topics.Teubner Texte Math. 7, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1977. Zbl 0345.42003, MR 58 #12339. Zbl 0345.42003, MR 0493311
Reference: [83] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland Mathematical Library, 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. Sec. rev. and enlarged ed. Barth, Heidelberg, 1995. Zbl 0830.46028, MR 96f:46001. Zbl 0387.46033, MR 1328645
Reference: [84] Triebel H.: Spaces of Besov-Hardy-Sobolev type.Teubner Texte Math. 15, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978. Zbl 0408.46024, MR 82g:46071. Zbl 0408.46024, MR 0581907
Reference: [85] Triebel H.: Theory of Function Spaces.Mathematik und ihre Anwendungen in Physik und Technik, 38. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1983. Zbl 0546.46028, MR 85k:46020. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. Zbl 0546.46027, MR 86j:46026. Zbl 0546.46028, MR 0781540
Reference: [86] Triebel H.: A diagonal embedding theorem for function spaces with dominating mixed smoothness properties.Approximation and function spaces. Proc. 27th Semester, Warsaw. Banach Center Publ. 22. PWN, Warsaw, 1989, 475–486. Zbl 0707.46020, MR 92f:46044. Zbl 0707.46020, MR 1097217
Reference: [87] Triebel H.: Theory of Function Spaces II.Monographs in Mathematics. 84. Birkhäuser Verlag, Basel, 1992. Zbl 0763.46025, MR 93f:46029. Zbl 0763.46025, MR 1163193
Reference: [88] Triebel H.: Fractals and Spectra. Related to Fourier analysis and function spaces.Monographs in Mathematics, 91. Birkäuser Verlag, Basel, 1997. Zbl 0898.46030, MR 99b:46048. Zbl 0898.46030, MR 1484417
Reference: [89] Triebel H.: The Structure of Functions.Monographs in Mathematics. 97. Birkhäuser Verlag, Basel, 2001. Zbl 0984.46021, MR 2002k:46087. Zbl 0984.46021, MR 1851996
Reference: [90] Triebel H.: Theory of Function Spaces III.Monographs in Mathematics 100. Birkäuser Verlag, Basel, 2006. Zbl 1104.46001, MR MR2250142. Zbl 1104.46001, MR 2250142
Reference: [91] Trudinger N.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473–483. Zbl 0163.36402, MR 35 #7121. Zbl 0163.36402, MR 0216286
Reference: [92] Ullrich T.: Function spaces with dominating mixed smoothness. Characterization by differences.Jenaer Schriften Math. u. Inf., Math/Inf/05/06, 1–50.
Reference: [93] Ullrich T.: Smolyak’s algorithm, sampling on sparse grids and function spaces with domnating mixed smoothness.Jenaer Schriften Math. u. Inf., Math/Inf/15/06, 1–36.
Reference: [94] Vybíral J.: Characterization of function spaces with dominating mixed smoothness properties.Jenaer Schriften Math. u. Inf., Math/Inf/15/03, 1–42.
Reference: [95] Vybíral J.: A diagonal embedding theorem for function spaces with dominating mixed smoothness.Funct. Approx. Comment. Math. bf33 (2005), 101–120. Zbl pre05135207, MR MR2274153. Zbl 1186.46033, MR 2274153
Reference: [96] Vybíral J.: Function spaces with dominating mixed smoothness.Dissertationes Math. 436 (2006), 1–73. Zbl 1101.46023, MR 2007d:46030. MR 2231066, 10.4064/dm436-0-1
Reference: [97] Yserentant H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives.Numer. Math. 98 (2004), no. 4, 731–759. Zbl 1062.35100, 2005j:35032. Zbl 1062.35100, MR 2099319, 10.1007/s00211-003-0498-1
Reference: [98] Yserentant H.: Sparse grid spaces for the numerical solution of the Schrödinger equation.Numer. Math. 101 (2005), no. 2, 381–389. Zbl 1084.65125, MR 2006h:35043. MR 2195349, 10.1007/s00211-005-0581-x
Reference: [99] Yudovich V. I.: Some estimates connected with integral operators and with solutions of elliptic equations.Dokl. Akad. Nauk SSSR 138 (1961), 805–808; English transl. in Soviet Math. Doklady 2 (1961), 746–749. Zbl 0144.14501. Zbl 0144.14501, MR 0140822
Reference: [100] Ziemer W. P.: Weakly Differentiable Functions. Sobolev spaces and functions of bounded variation.Graduate Texts in Mathematics, 120. Springer, New York, 1989. Zbl 0692.46022, MR 91e:46046. Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3_5
.

Files

Files Size Format View
NAFSA_106-2006-1_6.pdf 676.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo