[3] Ao, W., Wei, J., Yao, W.:
Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem. Advances in Differential Equations 21 (2016), pp. 1049–1084.
MR 3556760
[4] Berestycki, H., Lin, T-C., Wei, J., Zhao, C.:
On phase-separation models: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208 (2013), pp. 163–200.
DOI 10.1007/s00205-012-0595-3 |
MR 3021546
[5] Berestycki, H., Terracini, S., Wang, K., Wei, J.:
On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243 (2013), pp. 102–126.
DOI 10.1016/j.aim.2013.04.012 |
MR 3062741
[7] Dancer, E. N., Du, Y.:
Competing species equations with diffusion, large interactions, andjumping nonlinearities. J. Differential Equations 114 (1994), pp. 434–475.
DOI 10.1006/jdeq.1994.1156 |
MR 1303035
[8] Dancer, E. N., Wang, K., Zhang, Z.:
Uniform H\"older estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species. J. Differential Equations 251 (2011), pp. 2737–2769.
DOI 10.1016/j.jde.2011.06.015 |
MR 2831712
[9] Dancer, E. N., Wang, K., Zhang, Z.:
The limit equation for the Gross-Pitaevskii equations and S. Terracini’s conjecture. J. Functional Analysis 262 (2012), pp. 1087–1131.
DOI 10.1016/j.jfa.2011.10.013 |
MR 2863857
[10] Dancer, E. N.:
On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discr. Cont. Dyn. Syst. 34 (2014), pp. 2481–2493.
DOI 10.3934/dcds.2014.34.2481 |
MR 3177644
[12] Felmer, P., Martinez, S., Tanaka, K.:
Uniqueness of radially symmetric positive solutions for $−\Delta u + u = u^p$ in an annulus. J. Differential Equations 245 (2008), pp. 1198–1209.
DOI 10.1016/j.jde.2008.06.006 |
MR 2436828
[13] Noris, B., Tavares, H., Terracini, S., Verzini, G.:
Uniform H\"older bounds for nonlinear Schr\"odinger systems with strong competition. Comm. Pure Appl. Math. 63 (2010), pp. 267–302.
DOI 10.1002/cpa.20309 |
MR 2599456
[14] Pacella, F.:
Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems. Milan Journal of Mathematics 73 (2005), pp. 221–236.
DOI 10.1007/s00032-005-0045-x |
MR 2175043
[15] Santos, E. Moreira dos, Pacella, F.:
Morse index of radial nodal solutions of Hénon type equations in dimension two. Communications in Contemporary Mathematics 19 (2017), 1650042.
DOI 10.1142/S0219199716500425 |
MR 3631930
[16] Shioji, N., Watanabe, K.:
A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$. J. Differential Equations 255 (2013), pp. 4448–4475.
DOI 10.1016/j.jde.2013.08.017 |
MR 3105928
[17] Shioji, N., Watanabe, K.:
Uniqueness and nondegeneracy of positive radial solutions of $\operatorname{div}(\rho\nabla u) + \rho(−gu + hu^p) = 0$. Calc. Var. Partial Differential Equations 55 (2016), 42pp.
MR 3470747
[18] Soave, N., Zilio, A.:
Uniform bounds for strongly competing systems: The optimal Lipschitz case. Arch. Ration. Mech. Anal. 218 (2015), pp. 647–697.
DOI 10.1007/s00205-015-0867-9 |
MR 3375537
[19] Soave, N., Zilio, A.:
Multidimensional entire solutions for an elliptic system modelling phase separation. Analysis and PDE 9 (2016), pp. 1019-1041.
DOI 10.2140/apde.2016.9.1019 |
MR 3531365
[20] Soave, N., Zilio, A.:
On phase separation in systems of coupled elliptic equations: Asymptotic analysis and geometric aspects. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), pp. 625–654.
DOI 10.1016/j.anihpc.2016.04.001 |
MR 3633738
[21] Tanaka, S.:
Uniqueness of sign-changing radial solutions for $\Delta u − u + |u|^{p−1}u = 0$ in some ball and annulus. J. Math. Anal. Appl. 439 (2016), pp. 154–170.
DOI 10.1016/j.jmaa.2016.02.036 |
MR 3474355
[22] Tavares, H., Terracini, S.:
Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. 45 (2012), pp. 273–317.
DOI 10.1007/s00526-011-0458-z |
MR 2984134
[24] Wang, K.:
Uniform Lipschitz regularity of flat segregated interfaces in a singularly perturbed problem. Calc. Var. (2017) 56:135.
MR 3690006
[26] Wei, J., Weth, T.:
Radial solutions and phase separation in a system of two coupled Schr\"odinger equations. Arch. Ration. Mech. Anal. 190 (2008), pp. 83-106.
DOI 10.1007/s00205-008-0121-9 |
MR 2434901