[1] M. Anderson: Classes of lattice-ordered semigroups describable in terms of chains. to appear.
[2] M. Anderson, C. С. Edwards: 
Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set. J. Austral. Math. Soc. 23 (1981), 395-404. 
MR 0638267 | 
Zbl 0488.06010 
[4] A. Bigard K. Keimel, S. Wolfenstein: 
Groups et Anneaux Reticules. Springer-Verlag, Berlin, 1977. 
MR 0552653 
[5] A. H. Clifford, G. B. Preston: 
The Algebraic Theory of Semigroups. Volume II, AMS, Providence, 1967. 
MR 0218472 | 
Zbl 0178.01203 
[6] P. Conrad: 
Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131-160. 
MR 0224519 | 
Zbl 0168.27702 
[9] H. Hahn: Über die nichtarchimedischen Grossensysteme. Sitz. ber. K. Akad. der Wiss., Math. Nat. Kl. IIa 116 (1907), 601-655.
[10] O. Holder: Die Axiome der Quantitat und die Lehre vom Mass. Ber. Verh. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64.
[12] D. Khoun: Cardinal des groupes reticules. C. R. Acad. Sc. Paris 270 (1970) A1150-A1154.
[13] T. Merlier: 
Nildemi-groupes totalement ordonnes. Czech. Math. J. 24 (99) (1974), 403-410. 
MR 0347700 | 
Zbl 0321.06014 
[15] T. Saito: 
Archimedean classes in a nonnegatively ordered semigroup. J. Indian Math. Soc. 43 (1979), 79-104. 
MR 0682004 | 
Zbl 0528.06016 
[16] T. Saito: 
Nonnegatively ordered semigroups in the strict sense and problems of Satyanarayana. I. Proc. 3rd Symposium on Semigroups (Inter-Univ. Sem. House of Kansai, Kobe, 1979), Osaka Univ., Osaka, 1980, 45-49. 
MR 0571699