Previous |  Up |  Next

Article

Title: Archimedean equivalence for strictly positive lattice-ordered semigroups (English)
Author: Anderson, Marlow
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 1
Year: 1986
Pages: 18-27
.
Category: math
.
MSC: 06F05
MSC: 20M10
idZBL: Zbl 0601.06012
idMR: MR822861
DOI: 10.21136/CMJ.1986.102060
.
Date available: 2008-06-09T15:08:12Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102060
.
Reference: [1] M. Anderson: Classes of lattice-ordered semigroups describable in terms of chains.to appear.
Reference: [2] M. Anderson, C. С. Edwards: Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set.J. Austral. Math. Soc. 23 (1981), 395-404. Zbl 0488.06010, MR 0638267
Reference: [3] M. Anderson, C. C. Edwards: A representation theorem for distributive 1-monoids.Canad. Math. Bull., 27 (1984), 238-240. MR 0740420, 10.4153/CMB-1984-034-6
Reference: [4] A. Bigard K. Keimel, S. Wolfenstein: Groups et Anneaux Reticules.Springer-Verlag, Berlin, 1977. MR 0552653
Reference: [5] A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups.Volume II, AMS, Providence, 1967. Zbl 0178.01203, MR 0218472
Reference: [6] P. Conrad: Archimedean extensions of lattice-ordered groups.J. Indian Math. Soc. 30 (1966), 131-160. Zbl 0168.27702, MR 0224519
Reference: [7] P. Conrad J. Harvey, C. Holland: The Hahn embedding theorem for lattice-ordered groups.Trans. A.M.S. 108 (1963), 143-169. MR 0151534, 10.1090/S0002-9947-1963-0151534-0
Reference: [8] L. Fuchs: Teilweise geordnete algebraische Strukturen.Akademiai Kiado, Budapest, 1966. Zbl 0154.00708, MR 0204547
Reference: [9] H. Hahn: Über die nichtarchimedischen Grossensysteme.Sitz. ber. K. Akad. der Wiss., Math. Nat. Kl. IIa 116 (1907), 601-655.
Reference: [10] O. Holder: Die Axiome der Quantitat und die Lehre vom Mass.Ber. Verh. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64.
Reference: [11] W. C. Holland: The lattice-ordered group of automorphisms of an ordered set.Michigan Math. J. 10 (1963), 399-408. MR 0158009, 10.1307/mmj/1028998976
Reference: [12] D. Khoun: Cardinal des groupes reticules.C. R. Acad. Sc. Paris 270 (1970) A1150-A1154.
Reference: [13] T. Merlier: Nildemi-groupes totalement ordonnes.Czech. Math. J. 24 (99) (1974), 403-410. Zbl 0321.06014, MR 0347700
Reference: [14] T. Saito: Archimedean property in an ordered semigroup.J. Austral. Math. Soc. 8 (1968), 547-556. Zbl 0159.02803, MR 0230661, 10.1017/S1446788700006200
Reference: [15] T. Saito: Archimedean classes in a nonnegatively ordered semigroup.J. Indian Math. Soc. 43 (1979), 79-104. Zbl 0528.06016, MR 0682004
Reference: [16] T. Saito: Nonnegatively ordered semigroups in the strict sense and problems of Satyanarayana.I. Proc. 3rd Symposium on Semigroups (Inter-Univ. Sem. House of Kansai, Kobe, 1979), Osaka Univ., Osaka, 1980, 45-49. MR 0571699
.

Files

Files Size Format View
CzechMathJ_36-1986-1_3.pdf 1.208Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo