| Title: | On exponential approximation (English) |
| Author: | Huťa, Anton |
| Language: | English |
| Journal: | Aplikace matematiky |
| ISSN: | 0373-6725 |
| Volume: | 30 |
| Issue: | 5 |
| Year: | 1985 |
| Pages: | 321-331 |
| Summary lang: | English |
| Summary lang: | Czech |
| Summary lang: | Russian |
| . | |
| Category: | math |
| . | |
| Summary: | One has to find a real function $y(x_1,x_2,\dots ,x_n)$ of variables $x_i$, $i=1,2,\dots,x_n). If the distribution of the values has an exponential character, then it is of advantage to choose the approximation function in the form $y(x;i)=\Pi^p_{j=0}a(i^j)^{\Pi(x_1,\dots,x_n)}$ which gives better results than other functions (e.g. polynomials). In this paper 3 methods are given: 1. The least squares method adapted for the exponential behaviour of the function. 2. The cumulated values method, following the so-called King's formula. 3. The polynomial method mentioned only for comparison. A numerical example is given in which the accuracy of all the three methods is compared. (English) |
| Keyword: | exponential approximation |
| MSC: | 41A30 |
| MSC: | 41A63 |
| idZBL: | Zbl 0593.41017 |
| idMR: | MR0806830 |
| DOI: | 10.21136/AM.1985.104160 |
| . | |
| Date available: | 2008-05-20T18:28:13Z |
| Last updated: | 2020-07-28 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/104160 |
| . | |
| Reference: | [1] A. Huťa: On exponential interpolation.Acta Facultatis Rerum Naturalium Universitatis Conienianae, Mathematica XXXV (1979), 157-183. MR 0593924 |
| . |
| Files | Size | Format | View |
|---|---|---|---|
| AplMat_30-1985-5_3.pdf | 1.531Mb | application/pdf |
View/ |