Title: | On exponential approximation (English) |

Author: | Huťa, Anton |

Language: | English |

Journal: | Aplikace matematiky |

ISSN: | 0373-6725 |

Volume: | 30 |

Issue: | 5 |

Year: | 1985 |

Pages: | 321-331 |

Summary lang: | English |

Summary lang: | Czech |

Summary lang: | Russian |

. | |

Category: | math |

. | |

Summary: | One has to find a real function $y(x_1,x_2,\dots ,x_n)$ of variables $x_i$, $i=1,2,\dots,x_n). If the distribution of the values has an exponential character, then it is of advantage to choose the approximation function in the form $y(x;i)=\Pi^p_{j=0}a(i^j)^{\Pi(x_1,\dots,x_n)}$ which gives better results than other functions (e.g. polynomials). In this paper 3 methods are given: 1. The least squares method adapted for the exponential behaviour of the function. 2. The cumulated values method, following the so-called King's formula. 3. The polynomial method mentioned only for comparison. A numerical example is given in which the accuracy of all the three methods is compared. (English) |

Keyword: | exponential approximation |

MSC: | 41A30 |

MSC: | 41A63 |

idZBL: | Zbl 0593.41017 |

idMR: | MR0806830 |

. | |

Date available: | 2008-05-20T18:28:13Z |

Last updated: | 2015-06-11 |

Stable URL: | http://hdl.handle.net/10338.dmlcz/104160 |

. | |

Reference: | [1] A. Huťa: On exponential interpolation.Acta Facultatis Rerum Naturalium Universitatis Conienianae, Mathematica XXXV (1979), 157-183. MR 0593924 |

. |

Files | Size | Format | View |
---|---|---|---|

AplMat_30-1985-5_3.pdf | 1.497Mb | application/pdf |
View/ |