Previous |  Up |  Next

Article

Title: On countable Fréchet-Urysohn spaces (English)
Author: Malykhin, Viacheslav I.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 29
Issue: 4
Year: 1988
Pages: 695-701
.
Category: math
.
MSC: 54A25
MSC: 54A35
MSC: 54D55
idZBL: Zbl 0687.54005
idMR: MR982788
.
Date available: 2008-06-05T21:35:49Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106686
.
Reference: [1] A. V. ARHANGELSKII: Spektr chastot topologicheskogo prostranstva i klassifikaciya prostranstv.Doklady AN SSSR, 206 (1972), 265-268. (A. V. ARHANGELSKII: The frequency spectrum of a topological space and the classification of spaces, Sov. Math. Dokl. 13 (1972), 265-268.) MR 0394575
Reference: [2] A. V. ARHANGELSKII: Spektr chastot topologicheskogo prostranstva i operaciya proizvedeniya.Trudy Moskov. Matem. Ob-va 40 (1979). (A. V. ARHANGELSKII: The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. (1981), Issue 2, 163-200.)
Reference: [3] A. V. ARHANGELSKII V. V. TKAČUK: Prostranstva funkciĭ i topologicheskie invarianty.Moskva, izd-vo MGU, 1985. (A. V. ARHANGELSKII, V. V. TKAČUK: Function spaces and topological invariants.)
Reference: [4] V. V. POPOV D. B. RANCHIN: Ob odnom usilenii svoĭstva Freshe-Urysona.Vestnik Mosk. un-ta, (1979), No 2, 75-80. (V. V. POPOV, D. V. RANCHIN: About some strengthening of Fréchet-Urysohn property.)
Reference: [5] T. NOGURA: The product of <$\alpha_i$-spaces>.Topol. Appl. 25 (1987) No 1, 75-80. MR 0874979
Reference: [6] E. A. REZNICHENKO: O kolichestve schetnykh prostranstv hreshe-Urybona.v sb. "Nepreryvnye funkcii na topologicheskikh prostranstvakh", Riga, izd-vo LGU, 1986, s. 147-154. (E. A. REZNICHENKO: On the number of countable Fréchet-Urysohn spaces.)
Reference: [7] A. DOW: Two classes of Fréchet-Urysohn spaces.Preprint, 1988. MR 0975638
Reference: [8] V. I. MALYKHIN: O schetnykh prostranstvakh, ne imeyushchikh bikompaktifikacii schetnoĭ tesnoty.Doklady AN SSSR 206 (1972), 1293-1296. (V. I. MALYKHIN: On countable spaces having no compactifications of countable tightness, Sov. Math. Dokl. 13 (1972).) MR 0320981
Reference: [9] F. ROTHBERGER: On some problem of Hausdorff and Sierpinski.Fund. Math. 35 (1948), 29-45. MR 0029958
Reference: [10] N. N. LUZIN: O chastyakh natural'nogo ryada.Doklady AN SSSR 40 (1943), 195-199. (N. N. LUZIN: About parts of the set of natural numbers.)
.

Files

Files Size Format View
CommentatMathUnivCarol_029-1988-4_9.pdf 576.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo