Previous |  Up |  Next

Article

Title: On $F$-differentiable Fredholm operators of nonstationary initial-boundary value problems (English)
Author: Ďurikovič, Vladimír
Author: Ďurikovičová, Monika
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 3
Year: 2002
Pages: 227-241
Summary lang: English
.
Category: math
.
Summary: We are dealing with Dirichlet, Neumann and Newton type initial-boundary value problems for a general second order nonlinear evolution equation. Using the Fredholm operator theory we establish some sufficient conditions for Fréchet differentiability of associated operators to the given problems. With help of these results the generic properties, existence and continuous dependency of solutions for initial-boundary value problems are studied. (English)
Keyword: Hölder spaces
Keyword: Fréchet differentiable Fredholm operator of the zero index
Keyword: critical and singular points of the mixed problem
MSC: 35K55
MSC: 35R15
MSC: 47H30
MSC: 47J35
MSC: 58B15
MSC: 58D25
idZBL: Zbl 1090.58012
idMR: MR1921594
.
Date available: 2008-06-06T22:30:45Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107836
.
Reference: [1] Amann, H.: Global existence for semilinear parabolic systems.J. Reine Angew. Math. 360 (1985), 47–83. Zbl 0564.35060, MR 0799657
Reference: [2] Ambrosetti, A.: Global inversion theorems and applications to nonlinear problems.Conferenze del Seminario di Mathematica dell’ Universitá di Bari, Atti del $3^0$ Seminario di Analisi Funzionale ed Applicazioni, A Survey on the Theoretical and Numerical Trends in Nonlinear Analysis, Gius. Laterza et Figli, Bari, 1976, pp. 211–232. MR 0585116
Reference: [3] Brüll, L. and Mawhin, J.: Finiteness of the set of solutions of some boundary value problems for ordinary differential equations.Arch. Math. (Brno) 24 (1988), 163–172. MR 0983234
Reference: [4] Ďurikovič, V.: An initial-boundary value problem for quasi-linear parabolic systems of higher order.Ann. Polon. Math. XXX (1974), 145–164. MR 0350206
Reference: [5] Ďurikovič, V.: A nonlinear elliptic boundary value problem generated by a parabolic problem.Acta Math. Univ. Comenian. XLIV-XLV (1984), 225–235. MR 0775025
Reference: [6] Ďurikovič, V. and Ďurikovičová, M.: Some generic properties of nonlinear second order diffusional type problem.Arch. Math. (Brno) 35 (1999), 229–244. MR 1725840
Reference: [7] Eidelman, S. D. and Ivasišen, S. D.: The investigation of the Green’s matrix for a nonhomogeneous boundary value problems of parabolic type.Trudy Mosk. Mat. Obshch. 23 (1970), 179–234. (in Russian) MR 0367455
Reference: [8] Friedmann, A.: Partial Differential Equations of Parabolic Type.Izd. Mir, Moscow, 1968. (in Russian)
Reference: [9] Haraux, A.: Nonlinear Evolution Equations - Global Behaviour of Solutions.Springer - Verlag, Berlin, Heidelberg, New York, 1981. MR 0610796
Reference: [10] Ivasišen, S. D.: Green Matrices of Parabolic Boundary Value Problems.Vyšša Škola, Kijev, 1990. (in Russian)
Reference: [11] Ladyzhenskaja, O. A., Solonikov, V. A. and Uralceva, N. N.: Linejnyje i kvazilinejnyje urovnenija paraboliceskogo tipa.Izd. Nauka, Moscow, 1967. (in Russian)
Reference: [12] Mawhin, J.: Generic properties of nonlinear boundary value problems.Differential Equations and Mathematical Physics (1992), Academic Press Inc., New York, 217–234. Zbl 0756.47047, MR 1126697
Reference: [13] Quinn, F.: Transversal approximation on Banach manifolds.Proc. Sympos. Pure Math. (Global Analysis) 15 (1970), 213–223. Zbl 0206.25705, MR 0264713
Reference: [14] Smale, S.: An infinite dimensional version of Sard’s theorem.Amer. J. Math. 87 (1965), 861–866. Zbl 0143.35301, MR 0185604
Reference: [15] Šeda, V.: Fredholm mappings and the generalized boundary value problem.Differential Integral Equations 8 No. 1 (1995), 19–40. MR 1296108
Reference: [16] Taylor, A. E.: Introduction of Functional Analysis.John Wiley and Sons, Inc., New York, 1958. MR 0098966
Reference: [17] Trenogin, V. A.: Functional Analysis.Nauka, Moscow, 1980. (in Russian) Zbl 0517.46001, MR 0598629
Reference: [18] Yosida, K.: Functional Analysis.Springer-Verlag, Berlin, Heidelberg, New York, 1980. Zbl 0435.46002, MR 0617913
Reference: [19] Ďurikovič, V.: Funkcionálna analýza. Nelineárne metódy.Univerzita Komenského, Bratislava, 1989.
.

Files

Files Size Format View
ArchMathRetro_038-2002-3_7.pdf 393.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo