Previous |  Up |  Next


Hölder spaces; Fréchet differentiable Fredholm operator of the zero index; critical and singular points of the mixed problem
We are dealing with Dirichlet, Neumann and Newton type initial-boundary value problems for a general second order nonlinear evolution equation. Using the Fredholm operator theory we establish some sufficient conditions for Fréchet differentiability of associated operators to the given problems. With help of these results the generic properties, existence and continuous dependency of solutions for initial-boundary value problems are studied.
[1] Amann, H.: Global existence for semilinear parabolic systems. J. Reine Angew. Math. 360 (1985), 47–83. MR 0799657 | Zbl 0564.35060
[2] Ambrosetti, A.: Global inversion theorems and applications to nonlinear problems. Conferenze del Seminario di Mathematica dell’ Universitá di Bari, Atti del $3^0$ Seminario di Analisi Funzionale ed Applicazioni, A Survey on the Theoretical and Numerical Trends in Nonlinear Analysis, Gius. Laterza et Figli, Bari, 1976, pp. 211–232. MR 0585116
[3] Brüll, L. and Mawhin, J.: Finiteness of the set of solutions of some boundary value problems for ordinary differential equations. Arch. Math. (Brno) 24 (1988), 163–172. MR 0983234
[4] Ďurikovič, V.: An initial-boundary value problem for quasi-linear parabolic systems of higher order. Ann. Polon. Math. XXX (1974), 145–164. MR 0350206
[5] Ďurikovič, V.: A nonlinear elliptic boundary value problem generated by a parabolic problem. Acta Math. Univ. Comenian. XLIV-XLV (1984), 225–235. MR 0775025
[6] Ďurikovič, V. and Ďurikovičová, M.: Some generic properties of nonlinear second order diffusional type problem. Arch. Math. (Brno) 35 (1999), 229–244. MR 1725840
[7] Eidelman, S. D. and Ivasišen, S. D.: The investigation of the Green’s matrix for a nonhomogeneous boundary value problems of parabolic type. Trudy Mosk. Mat. Obshch. 23 (1970), 179–234. (in Russian) MR 0367455
[8] Friedmann, A.: Partial Differential Equations of Parabolic Type. Izd. Mir, Moscow, 1968. (in Russian)
[9] Haraux, A.: Nonlinear Evolution Equations - Global Behaviour of Solutions. Springer - Verlag, Berlin, Heidelberg, New York, 1981. MR 0610796
[10] Ivasišen, S. D.: Green Matrices of Parabolic Boundary Value Problems. Vyšša Škola, Kijev, 1990. (in Russian)
[11] Ladyzhenskaja, O. A., Solonikov, V. A. and Uralceva, N. N.: Linejnyje i kvazilinejnyje urovnenija paraboliceskogo tipa. Izd. Nauka, Moscow, 1967. (in Russian)
[12] Mawhin, J.: Generic properties of nonlinear boundary value problems. Differential Equations and Mathematical Physics (1992), Academic Press Inc., New York, 217–234. MR 1126697 | Zbl 0756.47047
[13] Quinn, F.: Transversal approximation on Banach manifolds. Proc. Sympos. Pure Math. (Global Analysis) 15 (1970), 213–223. MR 0264713 | Zbl 0206.25705
[14] Smale, S.: An infinite dimensional version of Sard’s theorem. Amer. J. Math. 87 (1965), 861–866. MR 0185604 | Zbl 0143.35301
[15] Šeda, V.: Fredholm mappings and the generalized boundary value problem. Differential Integral Equations 8 No. 1 (1995), 19–40. MR 1296108
[16] Taylor, A. E.: Introduction of Functional Analysis. John Wiley and Sons, Inc., New York, 1958. MR 0098966
[17] Trenogin, V. A.: Functional Analysis. Nauka, Moscow, 1980. (in Russian) MR 0598629 | Zbl 0517.46001
[18] Yosida, K.: Functional Analysis. Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 0617913 | Zbl 0435.46002
[19] Ďurikovič, V.: Funkcionálna analýza. Nelineárne metódy. Univerzita Komenského, Bratislava, 1989.
Partner of
EuDML logo