[1] Adams, M. E., Adaricheva, K. V., Dziobiak, W. and A. V. Kravchenko, A. V.: 
Some open question related to the problem of Birkhoff and Maltsev. Studia Logica 78 (2004), 357–378. 
MR 2108035[2] Adams, M. E  and Dziobiak, W.: 
$Q$-universal quasivarieties of algebras. Proc. Amer. Math. Soc. 120 (1994), 1053–1059. 
MR 1172942[3] Adams, M. E  and Dziobiak, W.: 
Lattices of quasivarieties of $3$-element algebras. J. Algebra 166 (1994), 181–210. 
MR 1276823[4] Adams, M. E  and Dziobiak, W.: 
Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253–283. 
MR 1835799[5] Adams, M. E  and Dziobiak, W.: 
Quasivarieties of idempotent semigroups. Internat. J. Algebra Comput. 13 (2003), 733–752. 
MR 2028101[6] Birjukov, A. P.: 
Varieties of idempotent semigroups. Algebra i Logika 9 (1970), 255–273. (in Russian) 
MR 0297897[7] Clifford, A. H. and Preston, G.B.: The Algebraic Theory of Semigroups. AMS, Providence, (vol. 1 1961, vol. 2 1967).
[8] Demlová, M. and Koubek, V.: 
Endomorphism monoids of bands. Semigroup Forum 38 (1989), 305–329. 
MR 0982011[9] Demlová, M. and Koubek, V.: 
Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66 (2000), 477–516. 
MR 1804205[10] Demlová, M. and Koubek, V.: 
Weaker universalities in semigroup varieties. Novi Sad J. Math. 34 (2004), 37–86. 
MR 2136462[11] Demlová, M. and Koubek, V.: 
Weak alg-universality and $Q$-universality of semigroup quasivarieties. Comment. Math. Univ. Carolin. 46 (2005), 257–279. 
MR 2176891[12] Dziobiak, W.: 
On subquasivariety lattices of some varieties related with distributive $p$-algebras. Algebra Universalis 21 (1985), 205–214. 
MR 0835971 | 
Zbl 0589.08007[13] Dziobiak, W.: 
The subvariety lattice of the variety of distributive double $ p$-algebras. Bull. Austral. Math. Soc. 31 (1985), 377–387. 
MR 0801597 | 
Zbl 0579.06012[15] Gerhard, J. A.: 
The lattice of equational classes of idempotent semigroups. J. Algebra 15 (1970), 195–224. 
MR 0263953 | 
Zbl 0194.02701[16] Gerhard, J. A. and Shafaat, A.: 
Semivarieties of idempotent semigroups. Proc. London Math. Soc. 22 (1971), 667–680. 
MR 0292967[17] Goralčík, P. and Koubek, V.: 
Minimal group–universal varieties of semigroups. Algebra Universalis 21 (1985), 111-122. 
MR 0835975[18] Hedrlín, Z. and Lambek, J.: 
How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195–212. 
MR 0237611[19] Hedrlín, Z. and Pultr, A.: 
Relations (graphs) with finitely generated semigroups. Monatsh. Math. 68 (1964), 213–217. 
MR 0168684[20] Hedrlín, Z. and Pultr, A.: 
Symmetric relations (undirected graphs) with given semigroups. Monatsh. Math. 69 (1965), 318–322. 
MR 0188082[21] Hedrlín, Z. and Sichler, J.: 
Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1 (1971), 97–103. 
MR 0285580[22] Koubek, V.: 
Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolin. 18 (1977), 115–127. 
MR 0457276 | 
Zbl 0355.18006[23] Koubek, V.: 
Graphs with given subgraphs represent all categories II. Comment. Math. Univ. Carolin. 19 (1978), 249–264. 
MR 0498229 | 
Zbl 0375.18004[24] Koubek, V. and Radovanská, H.: 
Algebras determined by their endomorphism monoids. Cahiers Topologie Géom. Différentielle Catég. 35 (1994), 187–225. 
MR 1295117[25] Koubek, V. and Sichler, J.: 
Universal varieties of semigroups. J. Austral. Math. Soc. Ser. A 36 (1984), 143–152. 
MR 0725742[26] Koubek, V. and Sichler, J.: 
Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Math. J. 48 (1998), 473–544. 
MR 1637938[27] Koubek, V. and Sichler, J.: 
On relatively universality and $Q$-universality. Studia Logica 78 (2004), 279–291. 
MR 2108030[28] Pultr, A. and Trnková, V.: 
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. 
MR 0563525[29] Rosický, J.: 
On example concerning testing categories. Comment. Math. Univ. Carolin. 18 (1977), 71–75. 
MR 0432730[30] Sapir, M. V.: 
Varieties with a finite number of subquasivarieties. Sib. Math. J. 22 (1981), 168–187. 
MR 0638015 | 
Zbl 0491.08011[31] Sapir, M. V.: 
Varieties with countable number of subquasivarieties. Sib. Math. J. 25 (1984), 148–163. 
MR 0746951[32] Sapir, M. V.: 
The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172–180. 
MR 0855737 | 
Zbl 0599.08014[33] Schein, B.M.: 
Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50. 
MR 0272686 | 
Zbl 0197.28902[34] Schein, B.M.: 
Bands with isomorphic endomorphism semigroups. J. Algebra 96 (1985), 548–565. 
MR 0810545 | 
Zbl 0579.20064