Previous |  Up |  Next

Article

Title: Some new classes of topological vector spaces with closed graph theorems (English)
Author: Rodrigues, Brian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 287-296
.
Category: math
.
Summary: In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation. (English)
Keyword: inverse seminorm
Keyword: Mackey seminorm
Keyword: nearly-semi-continuous
Keyword: semi-barrelled
Keyword: semi-$B$-complete
Keyword: semi-infra-(s)
Keyword: semi-Mackey
MSC: 46A16
MSC: 46A30
MSC: 47A05
idZBL: Zbl 0778.46006
idMR: MR1137790
.
Date available: 2009-01-08T17:44:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116970
.
Reference: [1] Adasch N.: Topologische Produkte gewisser topologischer Vectorräume.Math. Ann. 186 (1970), 280-284. MR 0276708
Reference: [2] Adasch N.: Tonnelierte Räume und zwei Sätze von Banach.Math. Ann. 186 (1970), 209-214. Zbl 0184.14804, MR 0467230
Reference: [3] Adasch N.: Eine Bemerkung über den Graphensatz.Math. Ann. 186 (1970), 327-333. Zbl 0184.14901, MR 0273345
Reference: [4] Adasch N.: Der Graphensatz in topologischen Vectorräumen.Math. Z. 119 (1971), 131-142. MR 0412764
Reference: [5] Adasch N.: Vollständigkeit und der Graphensatz.J. reine angew. Math. 249 (1971), 217-220. Zbl 0238.46004, MR 0288544
Reference: [6] Adasch N., Ernst B., Keim D.: Topological vector spaces, The theory without local convexity conditions.Lecture Notes in Mathematics, 639, Eds. A. Dodd and B. Eckmann, Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR 0487376
Reference: [7] Beckenstein E., Narici L.: Topological vector spaces.Marcel Dekker, Inc., New York and Basel, 1985. Zbl 0569.46001, MR 0812056
Reference: [8] Horváth J.: Locally convex spaces.Lecture Notes in Mathematics, 331, Ed. L. Waelbroeck, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR 0482027
Reference: [9] Iyahen S.O.: On certain classes of topological spaces.Proc. London Math. Soc. (3) 18 (1968), 285-307. MR 0226358
Reference: [10] Iyahen S.O.: Semiconvex spaces.Glasgow J. Math. 9 (1968), 111-118. Zbl 0184.34003, MR 0239390
Reference: [11] Jarchow H.: Locally convex spaces.B.G. Tuebner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257
Reference: [12] Kelley J., Namioka I.: Linear topological spaces.Van Nostrand, Princeton, 1963. Zbl 0318.46001, MR 0166578
Reference: [13] Köthe G.: General linear transformations of locally convex spaces.Math. Ann. 159 (1965), 309-328. MR 0192347
Reference: [14] Köthe G.: Topological vector spaces I,II.Springer-Verlag, New York, Heidelberg, Berlin, 1979. MR 0248498
Reference: [15] Kōmura Y.: On linear topological spaces.Kumamoto J. Sci., Ser.A 5 No. 3 (1962), 148-157. MR 0151817
Reference: [16] Powell M.: On Komura's closed-graph theorem.Trans. AMS 211 (1975), 391-426. Zbl 0318.46007, MR 0380339
Reference: [17] Pták V.: Completeness and the open mapping theorem.Bull. Soc. Math. France 86 (1958), 41-74. MR 0105606
Reference: [18] Raikov D.A.: Closed graph theorem and completeness.Proc. 4th All Union Math. Congress, Leningrad, 1961.
Reference: [19] Robertson W.: Completions of topological vector spaces.Proc. London Math. Soc. 8 (1958), 242-257. Zbl 0081.32604, MR 0098298
Reference: [20] Robertson A., Robertson W.: On the closed graph theorem.Proc. Glasgow Math. Assoc. 3 (1956), 9-12. Zbl 0073.08702, MR 0084108
Reference: [21] Rodrigues B.: On the Pták homomorphism theorem.J. Aust. Math. Soc. Ser. A 47 (1989), 322-333. Zbl 0708.46013, MR 1008846
Reference: [22] Schaefer H.H.: Topological vector spaces.Springer-Verlag, New York, Heidelberg, Berlin, 1986. Zbl 0983.46002, MR 0342978
Reference: [23] Tomášek S.: M-barrelled spaces.Comment. Math. Univ. Carolinae 11 (1970), 185-204. MR 0271691
Reference: [24] Tomášek S.: M-bornological spaces.Comment. Math. Univ. Carolinae 11 (1970), 235-248. MR 0271692
Reference: [25] Valdivia Ure na M.: El teorema general de la gráfica cerrada en los espacios vectoriales topológicos localmente convexos.Rev. Real Acad. Ci. Exact. Fis. Nat. Madrid 62 (1968), 545-551. MR 0240593
Reference: [26] Valdivia M.: Sobre el teorema de la gráfica cerreda.Collectanea Math. 22 (1971), 51-72.
Reference: [27] Valdivia M.: Locally convex spaces.Mathematics Studies 67, North-Holland, Amsterdam, New York, Oxford, 1982. Zbl 0708.46003, MR 0671092
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_11.pdf 220.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo