Title:
|
A strengthening of the Katětov-Tong insertion theorem (English) |
Author:
|
Kubiak, Tomasz |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
34 |
Issue:
|
2 |
Year:
|
1993 |
Pages:
|
357-362 |
. |
Category:
|
math |
. |
Summary:
|
Normal spaces are characterized in terms of an insertion type theorem, which implies the Katětov-Tong theorem. The proof actually provides a simple necessary and sufficient condition for the insertion of an ordered pair of lower and upper semicontinuous functions between two comparable real-valued functions. As a consequence of the latter, we obtain a characterization of completely normal spaces by real-valued functions. (English) |
Keyword:
|
normal space |
Keyword:
|
semicontinuous functions |
Keyword:
|
insertion |
Keyword:
|
limit functions |
Keyword:
|
completely normal space |
MSC:
|
54C30 |
MSC:
|
54D15 |
idZBL:
|
Zbl 0807.54023 |
idMR:
|
MR1241744 |
. |
Date available:
|
2009-01-08T18:04:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118588 |
. |
Reference:
|
[1] Aleksandrov P.S., Pasynkov B.A.: Introduction to Dimension Theory (in Russian).Nauka, Moscow, 1973. MR 0365524 |
Reference:
|
[2] Aumann G.: Reelle Funktionen.Springer-Verlag, Berlin, 1954. Zbl 0181.05801, MR 0061652 |
Reference:
|
[3] Blair R.L.: Extension of Lebesgue sets and real-valued functions.Czechoslovak Math. J. 31 (1981), 63-74. MR 0604112 |
Reference:
|
[4] Blair R.L., Swardson M.A.: Insertion, approximation, and extension of real-valued functions.Proc. Amer. Math. Soc. 93 (1985), 169-175. Zbl 0558.54012, MR 0766550 |
Reference:
|
[5] Blatter J., Seever G.L.: Interposition and lattice cones of functions.Trans. Amer. Math. Soc. 222 (1976), 65-96. Zbl 0352.46011, MR 0438094 |
Reference:
|
[6] Engelking R.: General Topology.P.W.N., Warszawa, 1977. Zbl 0684.54001, MR 0500780 |
Reference:
|
[7] Jameson G.J.O.: Topology and Normed Spaces.Chapman and Hall, London, 1974. Zbl 0285.46002, MR 0463890 |
Reference:
|
[8] Katětov M.: On real-valued functions in topological spaces.Fund. Math. 38 (1951), 85-91 Correction 40 (1953), 203-205. MR 0050264 |
Reference:
|
[9] Kotzé W., Kubiak T.: Insertion of a measurable function.J. Austral. Math. Soc., to appear. MR 1297004 |
Reference:
|
[10] Kubiak T.: $L$-fuzzy normal spaces and Tietze extension theorem.J. Math. Anal. Appl. 125 (1987), 141-153. Zbl 0643.54008, MR 0891354 |
Reference:
|
[11] Kubiak T.: Completely normal spaces and insertion of semicontinuous functions.to appear. |
Reference:
|
[12] Lane E.P.: Insertion of a continuous function.Topology Proc. 4 (1979), 463-478. Zbl 0386.54006, MR 0598287 |
Reference:
|
[13] Michael E.: Continuous selections I.Annals of Math. 63 (1956), 361-382. Zbl 0071.15902, MR 0077107 |
Reference:
|
[14] Preiss D., Vilímovský J.: In-between theorems in uniform spaces.Trans. Amer. Math. Soc. 261 (1980), 483-501. MR 0580899 |
Reference:
|
[15] Priestley H.A.: Separation theorems for semicontinuous functions on normally ordered topological spaces.J. London Math. Soc. (2) 3 (1971), 371-377. MR 0278268 |
Reference:
|
[16] Rodabaugh S.E., Höhle U., Klement E.P. (Eds.): Applications of Category Theory to Fuzzy Subsets.Kluwer Academic Publ., Dordrecht, 1992, p. 348. MR 1154566 |
Reference:
|
[17] Schmid J.: Rational extension of $C(X)$ and semicontinuous functions.Dissert. Math. 270 (1988), 1-27. MR 0932847 |
Reference:
|
[18] Tong H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289-292. Zbl 0046.16203, MR 0050265 |
. |