Previous |  Up |  Next

Article

Title: A strengthening of the Katětov-Tong insertion theorem (English)
Author: Kubiak, Tomasz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 357-362
.
Category: math
.
Summary: Normal spaces are characterized in terms of an insertion type theorem, which implies the Katětov-Tong theorem. The proof actually provides a simple necessary and sufficient condition for the insertion of an ordered pair of lower and upper semicontinuous functions between two comparable real-valued functions. As a consequence of the latter, we obtain a characterization of completely normal spaces by real-valued functions. (English)
Keyword: normal space
Keyword: semicontinuous functions
Keyword: insertion
Keyword: limit functions
Keyword: completely normal space
MSC: 54C30
MSC: 54D15
idZBL: Zbl 0807.54023
idMR: MR1241744
.
Date available: 2009-01-08T18:04:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118588
.
Reference: [1] Aleksandrov P.S., Pasynkov B.A.: Introduction to Dimension Theory (in Russian).Nauka, Moscow, 1973. MR 0365524
Reference: [2] Aumann G.: Reelle Funktionen.Springer-Verlag, Berlin, 1954. Zbl 0181.05801, MR 0061652
Reference: [3] Blair R.L.: Extension of Lebesgue sets and real-valued functions.Czechoslovak Math. J. 31 (1981), 63-74. MR 0604112
Reference: [4] Blair R.L., Swardson M.A.: Insertion, approximation, and extension of real-valued functions.Proc. Amer. Math. Soc. 93 (1985), 169-175. Zbl 0558.54012, MR 0766550
Reference: [5] Blatter J., Seever G.L.: Interposition and lattice cones of functions.Trans. Amer. Math. Soc. 222 (1976), 65-96. Zbl 0352.46011, MR 0438094
Reference: [6] Engelking R.: General Topology.P.W.N., Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [7] Jameson G.J.O.: Topology and Normed Spaces.Chapman and Hall, London, 1974. Zbl 0285.46002, MR 0463890
Reference: [8] Katětov M.: On real-valued functions in topological spaces.Fund. Math. 38 (1951), 85-91 Correction 40 (1953), 203-205. MR 0050264
Reference: [9] Kotzé W., Kubiak T.: Insertion of a measurable function.J. Austral. Math. Soc., to appear. MR 1297004
Reference: [10] Kubiak T.: $L$-fuzzy normal spaces and Tietze extension theorem.J. Math. Anal. Appl. 125 (1987), 141-153. Zbl 0643.54008, MR 0891354
Reference: [11] Kubiak T.: Completely normal spaces and insertion of semicontinuous functions.to appear.
Reference: [12] Lane E.P.: Insertion of a continuous function.Topology Proc. 4 (1979), 463-478. Zbl 0386.54006, MR 0598287
Reference: [13] Michael E.: Continuous selections I.Annals of Math. 63 (1956), 361-382. Zbl 0071.15902, MR 0077107
Reference: [14] Preiss D., Vilímovský J.: In-between theorems in uniform spaces.Trans. Amer. Math. Soc. 261 (1980), 483-501. MR 0580899
Reference: [15] Priestley H.A.: Separation theorems for semicontinuous functions on normally ordered topological spaces.J. London Math. Soc. (2) 3 (1971), 371-377. MR 0278268
Reference: [16] Rodabaugh S.E., Höhle U., Klement E.P. (Eds.): Applications of Category Theory to Fuzzy Subsets.Kluwer Academic Publ., Dordrecht, 1992, p. 348. MR 1154566
Reference: [17] Schmid J.: Rational extension of $C(X)$ and semicontinuous functions.Dissert. Math. 270 (1988), 1-27. MR 0932847
Reference: [18] Tong H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289-292. Zbl 0046.16203, MR 0050265
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_18.pdf 188.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo