Previous |  Up |  Next

Article

Title: A property of $B_2$-groups (English)
Author: Rangaswamy, K. M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 627-631
.
Category: math
.
Summary: It is shown, under ZFC, that a $B_2$-group has the interesting property of being $\aleph _0$-prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on $B_2$-groups. (English)
Keyword: torsion-free abelian groups
Keyword: Butler groups
Keyword: $B_2$-groups
Keyword: $\aleph _0$-prebalanced subgroups
Keyword: completely decomposable groups
Keyword: separative subgroups
MSC: 20K20
MSC: 20K25
MSC: 20K27
idZBL: Zbl 0823.20058
idMR: MR1321233
.
Date available: 2009-01-08T18:13:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118704
.
Reference: [AH] Albrecht U., Hill P.: Butler groups of infinite rank and Axiom-3.Czech. Math. J. 37 (1987), 293-309. Zbl 0628.20045, MR 0882600
Reference: [BF] Bican L., Fuchs L.: Subgroups of Butler groups.to appear. Zbl 0802.20045, MR 1378188
Reference: [DHR] Dugas M., Hill P., Rangaswamy K.M.: Butler groups of infinite rank.Trans. Amer. Math. Soc. 320 (1990), 643-664. Zbl 0708.20018, MR 0963246
Reference: [F-1] Fuchs L.: Infinite Abelian Groups, vol. 2.Academic Press, New York, 1973. MR 0349869
Reference: [F-2] Fuchs L.: Butler Groups of Infinite Rank.to appear. Zbl 0842.20045, MR 1316995
Reference: [HM] Hill P., Megibben C.: Pure subgroups of torsion-free groups.Trans. Amer. Math. Soc. 303 (1987), 765-778. Zbl 0627.20028, MR 0902797
Reference: [R] Rangaswamy K.M.: A homological characterization of abelian $B_2$-groups.Proc. Amer. Math. Soc., to appear. MR 1186993
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_4.pdf 175.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo